
Soft Matter

 PAPER 
 Scott Carver, David L. Hu  et al . 
 Intestines of non-uniform stiffness mold the corners of 
wombat feces 

ISSN 1744-6848

rsc.li/soft-matter-journal

Volume 17
Number 3
21 January 2021
Pages 413–772



This journal is©The Royal Society of Chemistry 2021 Soft Matter, 2021, 17, 475--488 | 475

Cite this: SoftMatter, 2021,

17, 475

Intestines of non-uniform stiffness mold the
corners of wombat feces†

Patricia J. Yang,‡a Alexander B. Lee,‡b Miles Chan,a Michael Kowalski,c Kelly Qiu,c

Christopher Waid,c Gabriel Cervantes,a Benjamin Magondu,c Morgan Biagioni,a

Larry Vogelnest,d Alynn Martin,e Ashley Edwards,e Scott Carver*e and
David L. Hu *ab

The bare-nosed wombat (Vombatus ursinus) is a fossorial, herbivorous, Australian marsupial, renowned for its

cubic feces. However, the ability of the wombat’s soft intestine to sculpt flat faces and sharp corners in feces

is poorly understood. In this combined experimental and numerical study, we show one mechanism for the

formation of corners in a highly damped environment. Wombat dissections show that cubes are formed

within the last 17 percent of the intestine. Using histology and tensile testing, we discover that the cross-

section of the intestine exhibits regions with a two-fold increase in thickness and a four-fold increase in

stiffness, which we hypothesize facilitates the formation of corners by contractions of the intestine. Using a

mathematical model, we simulate a series of azimuthal contractions of a damped elastic ring composed of

alternating stiff and soft regions. Increased stiffness ratio and higher Reynolds number yield shapes that are

more square. The corners arise from faster contraction in the stiff regions and relatively slower movement in

the center of the soft regions. These results may have applications in manufacturing, clinical pathology, and

digestive health.

1 Introduction

The ability of wombats to form relatively uniform, clean cut, cubic
feces – as opposed to the tapered cylindrical feces of most animals –
is unique in the animal kingdom. The earliest documented
observation of wombat cubic feces is by Eric Guiler (1960), who
states: ‘‘The droppings of wombats are of a characteristic rectan-
gular shape’’.1 The next publication dates 1979,2 although the
droppings were known within Australia well prior to both these
references. It is currently poorly understood how these animals
produce geometric scats. With no immediately apparent explana-
tion as to how an animal’s defecation process could produce
cube-shaped scats, a range of hypotheses have been proposed
over decades.3–5 A sample of hypotheses include compression of

fecal material between pelvic bones, a relatively geometric-shaped
sphincter, and parallel blocks of longitudinal intestinal smooth
muscles in the cecum. Notably, all hypotheses have exclusively
remained the matter of objective speculation and assumed
mechanism, rather than subject to actual investigation.

The ability of wombats to form cubic feces is of both general
and practical interest. How animals engage in varying forms of
communication, and the underlying evolutionary forces driving
them, have been of interest to ecologists for decades. Recent
fluid dynamic modelling has investigated cylindrical scat
formation,6 with clinical application to diarrhea and constipa-
tion disorders,7 however mechanisms leading to the formation
of diverse fecal shapes is less understood. In the built world,
cubes and shapes with sharp edges are made by cutting,
molding or extrusion. Examples include extruded pasta, hay
cubes and injection-moulded plastics. Cube formation in ani-
mal models appears to be a new method, and may inform
manufacturing processes, particularly if soft biological materi-
als are of interest. Another application may be in the care of
captive animals. In Australia, wombats are kept in captivity in
zoos and wildlife parks, and their feces are cleared on a daily
basis. Quantifying a wombat’s scat shape may be a useful
metric for non-invasively assessing the quality of a wombat’s
diet, digestive health, or level of hydration.

The spontaneous formation of geometric structures has long
been the purview of a field of physics called pattern formation.
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Geometric patterns have been observed in geology, physics, and
biology. The processes of cooling lava at Giant’s Causeway
Ireland or of drying cornstarch leads to hexagonal columns
called columnar jointings.8 Since the 1800s it has been known
that vibration of a membrane generates beautiful arrangements
of grains of sand known as Chladni figures.9 This is due to
nodal lines being created between parts of the plate that vibrate
in opposite directions. When a central stream of water strikes a
kitchen sink, a roughly circular standing wave of fluid is
created, but when the fluid is viscous, polygons such as two,
three, four, and five sided shapes can be observed.10,11 In
biology, pattern formation is responsible for the wing venation
patterns of dragonflies12 and the formation of toothed gears in
certain jumping insects.13 Despite the ubiquity of these pat-
terns, squares are rare, and cubes even more so.

In this study, we will focus on the bare-nosed wombat Vombatus
ursinus, which produces the most cubic feces of the three species
of wombat. The bare-nosed wombat, shown in Fig. 1a, has an adult
body length 1 m and mass 20–35 kg. It is drought-tolerant and
lives a solitary lifestyle in underground burrows. It typically
produces 80–100 cubic feces per day mostly above ground.3

Wombats generally have low-nutrient diets, primarily consisting
of grasses and sedges.14 To compensate, they have long, spacious
intestines of length 6–9 m (see Fig. 1d), utilize hind-gut fermenta-
tion, and have a mean food passage retention time of 40–80 h.14,15

In comparison, a human of 100 kg has an intestinal length of 8 m,
fore-gut fermentation, and a mean food passage retention time of
50 h.16,17 The extended digestion period of wombats allows them
to maintain exceptionally low metabolic rates18,19 and also an

energetically expensive digging lifestyle.20 These attributes allow
the wombat to survive droughts that would challenge most other
mammals.

Animals have long been known for using their urine and feces
to communicate. However, wombats have a unique way of using
their feces as markings. Wombats, particularly bare-nosed wom-
bats, have a propensity to deposit feces in aggregations called
latrines. Such latrines are found on or next to distinctive landscape
features such as prominent rocks, logs and small rises, and burrow
entrances within their home ranges,3,21 as shown in Fig. 1b.
Latrines are generally found with five or more wombat scats
indicating that one or several wombats may be involved. It is
generally believed that prominent latrines facilitate visual or
olfactory communication between wombats or other nearby ani-
mals. It has been proposed that the flat sides of the feces serves the
purpose of latrine stability by preventing the feces from rolling off
these raised surfaces.3–5 Understanding how wombats produce
cubes may provide insight into how such a unique adaptation
evolved.

In this study we investigate cube formation in the wombat
using dissections, material measurements, and mathematical
modeling. We begin in Section 2 with the histological and
tensile experiments performed on wombat intestine samples as
well as 2D phenomenological modeling informed by these
experiments. In Section 3, we discuss the implications of our
work and provide suggestions for future research. In Section 4,
we summarize the contributions of our study. In Section 5, we
provide the detailed methods.

2 Results
2.1 Wombat experiments

If wombats were to make cubes similar to the way we make
noodles, we would expect a square anal sphincter. In 2019, we
obtain a CT scan of a live adult female wombat (Video S1, ESI†).
The scan shows that the wombat’s anus is round, a feature
consistent with all other animals. Also, the pelvic bones, which
the feces were once proposed to glide past, are nowhere in the
vicinity of the colon. We thus conclude that wombats do not
change their feces shape through extrusion. We obtain further
evidence that extrusion does not influence shape with a series
of dissections of wombats.

In this study, we present data from three dissected wombats, all
obtained following euthanasia by veterinarian owing to vehicle
collisions in 2018–2020. Unfortunately, vehicle collisions are a
source of wombat and other marsupial mortality events in
Australia. In 2018, we dissect a young female wombat (2–3 years
old). In 2019, we dissect an adult male wombat (42 years old).
And in 2020, we dissect a young male wombat (o2 years old).
Given the similarity in age and size of all wombats, we expect
feces and intestinal measurements to be comparable. All dis-
sected wombats are referred to by the year of dissection. From
the 2018 wombat, cubic feces are removed from the end of
the distal colon and unformed feces removed from the end
of the proximal colon. One of the cubic feces is scanned with

Fig. 1 Wombats form cubic feces. All scalebars represent 5 cm. (a) A
female wombat with her joey. (b) A typical wombat latrine consisting of
feces placed on a low rock or stump. (c) A 2019 dissection of a wombat
shows the cubic feces fully formed within the mid-distal colon, (d) the
excised 3 m of wombat intestine shows feces transforming from a yellow
yogurt-like slurry near the stomach to darkened dry cubes near the anus.
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a Faro arm to obtain a 3D point cloud reconstruction (see
Video S2, ESI†).

The wombat intestine of 6–9 m length (approximate length
for a fully grown wombat) consists of four sections after the
oesophagus: these include the stomach (0.14 m), a relatively
short small intestine (3.2 m), long proximal colon (3.9 m) and
distal colon (last 1.8 m). Fig. 1d shows the shape of feces with
relation to their position in the intestine (lower proximal colon
to lower distal colon). In the proximal colon, the feces are a
yellow-green slurry of digesta. As the fecal material approaches
the anus, it becomes increasingly dry, as shown by the darker
color. The beveled edges and flat faces also become increas-
ingly prominent.

The removal of water from the feces may help it to better retain
its shape. Generally, at higher solid fractions, mammalian feces
are more viscous and behave viscoplastically.22 To measure the
level of dryness we begin by removing feces samples from both the
proximal and distal colons. By weighing a scat, we obtain mwet, and
by drying them in an oven, we obtain mdry. We define the water

content of each sample using w ¼ mwet �mdry

mwet
. Feces from the

proximal colon have a water content of w = 0.81 and show an
amorphous shape. Feces from the distal colon, the last 1 m (or
17 percent) of the 6 m digestive tract, have a much lower water
content of w = 0.53. This water content is lower than many
mammals: for example, humans have a fecal water content of
w = 0.74.23

The fecal cubes have dimensions: height 2.3 � 0.3 cm, width
2.5 � 0.3 cm, and axial length 4.0 � 0.6 cm (see Fig. 2), and the
edges of the feces are beveled. Thus, the aspect ratio of the feces
is 1 : 1 : 1.6, and so technically the feces are rectangular prisms,
but for simplicity, we continue to refer to them as cubes in
this paper.

To understand the formation of the cubes, we hang an intact
intestine vertically allowing the bottom end to swing and rotate
freely. We observe that the corners of the cubes are aligned,
suggesting that the intestine itself has a coordinate system to
dictate corner formation. We hypothesize that this coordinate
system is written in the intestines in terms of its thickness and
its material properties. To explore this idea, we turn to histology
and material testing.

2.2 Material properties of wombat intestine

From the 2019 wombat, two cross sections of the intestines are
hematoxylin and eosin stained and the thickness of the tissue
layers are measured under a microscope. Since the cubes form
in the distal colon, and are amorphous in the proximal colon,
we obtain cross sections from both the proximal and distal
colon and perform histological staining. These sections are
50 cm and 200 cm away from the anus. We observe the four
major tissue layers, arranged external to internal: longitudinal
muscle, circular muscle, glandular tissue, and mucosa, as
labelled in Fig. 3a and b with the letters L, C, G, M, respectively.
In particular, the circular and longitudinal muscle thickness
varies greatly between different azimuthal locations, and so we
focus on these two layers from hereon.

Fig. 3c and d shows the relationship between tissue thick-
ness and azimuthal position in the proximal and distal colon.
We arbitrarily assign y = 01 as the position of observed lowest
thickness of the intestine. The longitudinal muscle, the circular
muscle, and the total thickness of both muscles are shown by

Fig. 2 Wombat feces within intact intestines. (a) Two wombat fecal
pellets and schematic showing the length, height, and width of each
pellet. (b) Figure of preserved wombat intestines spread out to show the
natural progression towards cube-shaped. The feces labeled 1 is at the
anus. The orange dotted line marks 1.5 m from the anus. (c) The relation-
ship between wombat feces length scale and distance from the anus. The
last 1.5 m shows consistent dimensions of 4 � 2.3 � 2.5 cm.
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the blue, red, and black lines, respectively. Examining the distal
colon section first, shown in Fig. 3d, the longitudinal tissue layer
more than doubles in thickness, from 10 mm to 25 mm, with the
peak occurring at y = 2401. The circular muscle also has a 50%
increase from 22 mm to 35 mm, with peak at y = 901. It is
noteworthy that the peaks are 1801 out of phase, as shown by
the the total thickness, which has peaks at around 901 and 2701.

As shown in Fig. 3c, the proximal colon also has two peaks.
The azimuthal location may not match that of the distal colon
because we could not maintain azimuthal alignment between
the two sections. The presence of thickness peaks combined
with the absence of the cubic feces in the proximal region
indicates to us that both feces dryness and axisymmetric
intestinal properties must be present to enable cubing to occur.

From the 2020 wombat we test the tensile material properties to
determine the effects of non-uniform tissue thickness. We cut two
sequential cross sections of the distal colon to perform material
testing. These circular bands are cut 1801 out of phase so that we
can obtain data in regions that have been clamped during the
testing (see Fig. 3e and f). We perform tensile testing to measure
stiffness as a function of azimuthal position. We infer stiffness by
the strain measured between lines drawn at increments of 4 mm.
Fig. 3g shows the relationship between stiffness and azimuthal
position, where the blue and red points are stiffness from each of
the two cross sections, and the black is the average stiffness of each
301 region. We observe a single peak in stiffness at y = 901 in the
distal colon, where y = 01 is set to be the location of lowest
stiffness. Because the two cross sections are sequential we expect
them to have comparable trends. Wide discrepancies in the data
near y = 01 and at y = 1801 are likely due to the tissue being
clamped near those regions, which affects its ability to stretch
laterally, affecting the stiffness measurement.

2.3 Simulation of intestinal contractions

We continue with our study using a theoretical model that
assumes that there are two bands of increased stiffness located
1801 out of phase. Tensile testing of passive tissue only displays
a single stiff region, but this test only measures azimuthal
stretching. A peristaltic contraction relies upon muscles in both
the azimuthal and the longitudinal directions. We surmise that
the peak in stiffness observed in the tensile test may corre-
spond to the factor of three increased thickness in the long-
itudinal muscle. The 0.5 factor of increased thickness in the
circular muscle apparently was not detected by our tensile test.
We hypothesize that the increased circular muscle thickness
results in a locally stronger muscle contraction during peristal-
sis. This locally increased contraction would phenomenologi-
cally be similar to an increased stiffness. For simplicity, we
develop our model as having two stiff regions to represent the
increased thickness of longitudinal and circular muscles. An
important parameter in this model is the stiffness ratio C, the
ratio between maximum and minimum stiffness, which we
observe in our tensile tests to be 4 (see Fig. 3g, peak stiffness is
4 times that of baseline stiffness).

We propose a phenonemological model to investigate how non-
uniform intestinal properties can influence feces shape during
peristaltic contractions. The goal of our model is to rationalize how
two regions of stiffness can result in four corners of the feces. A
square is defined as having 8 regions of differing curvature: zero
curvature at the flat sides, and steep peaks at each of the corners. It
is thus not obvious how the contraction of a band with 2 regions of
stiffness can result in 4 peaks in curvature.

We begin with a few caveats on our model. The real wombat
intestines are three-dimensional and filled with viscoelastic

Fig. 3 Non-uniform thickness and stiffness of the wombat intestine. (a and b) Histology of the distal colon, with the longitudinal muscle, circular muscle,
glandular tissue, and mucosa layer labelled with the letters L, C, G, M, respectively. Scale bar, 20 microns. (a) Staining corresponds to the azimuthal
position y = 401 and shows the thinnest longitudinal muscle thickness. (b) Staining corresponds to y = 2401 and shows the largest longitudinal thickness.
(c and d) The relationship between azimuthal position and tissue thickness, with the longitudinal muscle, circular muscle and total muscle thickness given
by the blue, red, and black lines, respectively. (c) is from the proximal colon, and (d) from the distal colon. (e) Custom-built tensile testing setup for the
wombat intestines. Scalebar, 1 cm. (f) Schematic showing two sequential cross sections cut at 1801 offset to obtain tensile testing data of the full 3601.
Cuts are made at the dotted red lines and tick marks are drawn using the blue lines. (g) The relationship between azimuthal position and tissue stiffness.
The blue and red points correspond to each of the adjacent cross sections and the black line to the average stiffness.
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feces. The peristaltic contractions occur at an unknown inten-
sity for an unknown duration. Thus, a fully accurate three-
dimensional model cannot be done with the current knowledge
about the intestine material dynamics. Instead, we take a
simplified approach: our model is two dimensional, consider-
ing a circular cross-section of the intestine. Rather than model-
ing the interaction between the intestines and the viscoelastic
feces, the feces are represented as added mass along the
intestinal walls as well as a linear damping in all directions.

We conduct our modeling in two phases, beginning with an
equilibrium phase to create an initial strained state of the
intestine, and followed by a non-equilibrium series of contrac-
tions. In the first phase, feces are initially pushed into the 2D
cross-section of our model. We assume the feces exerts a
constant pressure against the intestinal walls until the system
comes to equilibrium. We find that this equilibrium state is
necessary to prevent unphysical behavior in the second phase
of the model.

Once the initial equilibrium state of strain is found, the
intestine begins contracting by shortening the springs’ rest
length, l0. Multiple contractions are simulated by changing the
rest length to a contracted value, holding the contraction, and
then taking a relaxed value, and holding this length. The
contraction dynamics are thus idealized as a square wave.
The governing equations arise from the damping force in all
directions and the elastic spring forces of the intestinal walls.

The evolution of the solution shape is recorded as a function of
time. Since the wombat fecal pellet changes shape as it travels
down the intestine over 2–4 days, it is not clear whether it
reaches an equilibrium shape before it is ejected. Thus, our
goal is not to find an equilibrium shape for the feces but to
record how transient square-like shapes can arise. We also use
this method to determine how different intestinal and fecal
parameters may influence the shape.

Now that we have discussed the general idea of the model,
we turn to the specifics of the implementation. We divide the
intestine into a ring of 4n nodes, each of mass m. Each node is
connected to its neighboring nodes using linear springs of
varying stiffness. We divide the ring into 4 quadrants of n nodes
each. The regions are sequentially soft and stiff in an alternat-
ing ABAB pattern, shown in Fig. 4a, and similar to the variation
in thickness we observe from the wombat histology. The soft
zones have springs of stiffness 4nk, and the stiff zones have
stiffness of 4Cnk, where the stiffness ratio C 4 1. Including n as
a factor in the stiffness allows the overall stiffness of the system
to be independent of the number of nodes in the ring.

To find the initial configuration for the model, we solve for
the equilibrium state. This state will depend on the minimum
and maximum spring stiffness 4nk and 4Cnk, and the spring
lengths li. It does not depend on mass or damping, which arise
in the contraction phase. As the feces is pushed into the 2D
intestinal ring, it exerts an outward constant pressure P.

Fig. 4 The mathematical model of contracting wombat intestines. (a) Schematic of the elastic ring simulating the intestine. Blue and red regions indicate
low and high stiffness zones, respectively. This color scheme is valid for (c–e) as well. (b) Close-up of the variables defined at a single node. The
equilibrium shape of the intestine arises from solving the force balances perpendicular and parallel to the angular bisector shown. (c–e) Sequence of
intestine shapes during a series of contractions and the corresponding relationships (f–h) between curvature and aziumuthal positions for each of these
shapes. For these simulations, C = 4, and Re = 10�3. (c) At time t = 0 s, the equilibrium shape is close to circular, and the curvature (f) is near constant. (d)
After several contractions, the intestine becomes increasingly square (t = 7.9 s), as shown. Note that depending on the Reynolds number and stiffness,
some shapes are more square than others. The four peaks of curvature in (g) correspond to the four corners. (e) Past the peak squareness, S, the
contraction continues to deform the intestine, and the shape begins to resemble an ellipse. This frame corresponds to a time t = 30 s.
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The equilibrium arrangement of nodes is found from the
local force balance on the individual nodes. Consider a node
within the soft region (see Fig. 4b). Attached to it are two
springs of stiffness 4nk, stretched to lengths l1 and l2, respec-
tively. The angle formed between the springs is f. The pressure
force exerted on the node is perpendicular to the spring and
proportional to the spring length, 1

2Pl1 and 1
2Pl2. We draw our

axis parallel and perpendicular to the angular bisector. By
considering the force balance perpendicular to the angular
bisector, we see that l1 = l2. This also holds true for nodes
within the stiff region. We can also show that if all of the spring
lengths are the same, the angle f of each of those nodes must
also be the same.

We then have 5 unknowns: lA and fA for the soft regions, lB

and fB for the stiff regions, and fAB, the angle at the 4
interfacial nodes between the stiff and soft regions. We there-
fore require 5 equations. Four equations come from local force
balances, and the final equation comes from the assumed
convex geometry of the equilibrium shape. This calculation is
described in more detail in Section 5.

The equilibrium shape is used as the initial condition of the
intestine before the contraction begins. The contraction of the
intestinal wall is simulated by alternating the rest length of
each spring from l0 to l0/4 using a square wave with period t. As
wombat intestine contractions occur at an unknown intensity
and period, these parameters were chosen arbitrarily.

l0 ¼
l0 cosð2pt=tÞo 0
l0=4 cosð2pt=tÞ � 0

�
(1)

The net force comes from the two spring forces attached to
each node and a damping force �b

-
vi opposing the direction of

motion, where b is a damping coefficient and -vi is the velocity of
the ith node. The mass of each node, m accounts not only for
the mass of the intestinal tissue, which is likely negligible, but
also the added mass of the feces as it is displaced along the
digestive tract.

Fig. 4c–e shows the progression of wombat feces shape
during a series of contractions, using n = 50 nodes for each
region, a stiffness ratio C = 4, damping b = 45 g s�1, and added
mass m = 0.045 g. Fig. 4f–h shows the curvature measured
around the feces. The initial equilibrium shape of the intestine
is fairly circular, as shown by the nearly constant curvature in
Fig. 4f. Fig. 4d shows the peak squareness during mid-
contraction, where the feces shows the start of 4 corners, and
the curvature in Fig. 4g shows 4 peaks. The intestine displays
this transient square state and then passes out of the square
state as the contractions continue. We show a point later in the
contractions in Fig. 4e and h showing the feces is clearly less
square.

2.4 Simulation analysis

While it is easy to qualitatively distinguish between circles and
squares in both the simulation shape and the curvature, k(y),
graphs, we require a way to quantitatively measure the square-
ness of the shape. There exist many simple methods to measure

how round an object is,24 and we find one potential way to
measure squareness based on the definition of the squircle.25

However, the method based on the squircle definition is not
robust to the noise found when applied to natural wombat
feces. It evaluates most samples as very square, but for a few,
visually similar samples, it evaluates them as very round (see
Supplemental material S1, ESI†).

We proceed by proposing a squareness metric that employs
the k(y) signal and cross-correlates it to idealized reference
curvatures going from the flat curvature of a circle to the
infinitely peaked curvature of a square (see Fig. 5a). Our final
squareness S is defined in eqn (17) in the Methods section, and
varies between 0 and 1, with 1 as being most square.

Fig. 5b shows the time course of feces squareness during the
simulation. We perform 40 sequential contractions, with each
oscillation in the figure marking a contraction. The squareness
has a sharp increase at t E 5 s with a peak squareness of S = 0.3
at t = 7.9 s. Subsequently, the squareness decreases, demon-
strating the transient nature of the square shape in the
simulation.

To determine if our simulation captures the squareness of
actual wombat feces, Fig. 5c shows 36 wombat feces collected
around Maria Island, off of Tasmania, Australia. A histogram of
the squareness of these samples is shown in Fig. 5d, and we
find that the feces have a mean squareness of 0.14 with a
standard deviation of 0.1. These lower values appear to be due
to sensitivity to the shape’s aspect ratio. For rectangular shapes,
the corners are not spaced apart azimuthally in a way that
matches the reference curvature. Nevertheless, our metric gives
similar values to visually similar shapes. We proceed by using
our squareness metric to explore the effect that different
simulation parameters have on the resulting feces shape.

We consider two dimensionless groups as the independent
variables that characterize the intestinal contraction: the stiff-
ness ratio C, and the Reynolds number, Re. The stiffness ratio
is defined as

C ¼ stiffness of stiff region

stiffness of soft region
; (2)

where we observe wombat feces has a stiffness ratio of C = 4.
We conduct simulations by matching simulation Reynolds
number Re with the biological Reynolds number Reb,
defined as

Reb ¼
rLv
m
¼ inertia

viscous force
; (3)

where r and m are the density and dynamic viscosity of the feces
respectively. We focus on the Reynolds number characterizing
the peristaltic contractions that generates the square cross
section, and not the Reynolds number of the slower axial flow
through the intestines. Therefore, L is the radius of the intes-
tine and v is the radial velocity of the intestine during a
contraction. For the feces of mammals,6 r E 1 g cm�3 and m
varies between 103–105 g (cm s)�1. The radius of the wombat
intestine is on the order of unity, L E 1 cm. Based on the
peristaltic contraction frequency of dogs and humans,26 which
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are between f = 0.05–0.2 Hz, we approximate that wombat
intestine contractions have a characteristic radial velocity of
v = fL = 0.01–1 cm s�1. All together, we approximate the
Reynolds number of wombat intestines deforming feces to be
Reb E 10�7–10�3. Since wombat feces is drier than that of most
mammals, the Reynolds number may be even lower, especially
near the anus.

Since our simulation is two-dimensional, and only accounts
for the feces properties in a phenomenological manner, we
must redefine the Reynolds number for the simulation. The
length scale is the mean radius of the initial equilibrium
intestine configuration, R. Similar to the biological system,
the radial velocity is v = R/t, where t is the period of the model
contractions. Note that the radius, and thus the velocity, are
functions of the spring constants, with higher spring constants
associated with a smaller equilibrium intestine size. The 2D
density is calculated as the added mass divided by the initial
area, r2D = m/(pR2), which has units of mass per unit area. The
viscosity of the feces is quantified by the damping coefficient b,
which has units of mass/time. The simulation’s Reynolds
number is

Re ¼
m
�

pR2
� �� �

RðR=tÞ
b

¼ m

pbt
(4)

To encapsulate the biological Reynolds number, we run simu-
lations in the range of Re = 10�4–100. Our first claim is that the two

stiff regions found in the wombat’s intestinal tissue serve an
important role in forming the transient square state. We investigate
this by performing a 1D parameter sweep of the simulation, varying
the spring stiffness ratio C, which relates the maximum and
minimum stiffness of the intestine, while keeping the Re = 10�3.
As C increases, the feces increases in squareness S according to the
linear regression S = 0.02C + 0.2, R2 = 0.98 (see Fig. 6b). For
comparison we include our experimental data by the open symbol,
associated with a stiffness ratio C = 4 and a squareness S = 0.14 �
0.1. According to our simulations, this stiffness ratio would yield a
squareness of S = 0.28, which is twice as large as the field data.

We now use our simulation to address the question of how
four peaks in curvature result from only two peaks of stiffness.
First consider a uniformly stiff ring. By definition, a smaller
circle has higher curvature than a larger circle. Therefore,
contracting a uniform ring of springs will naturally cause an
increase in curvature.

Now consider contractions of a ring of non-uniform stiffness.
In a zone of stiffer springs, an increase in curvature will occur
earlier than for zones of softer springs. Since there are two stiff
zones, this mechanism leads to two corners forming in the middle
of the stiff regions. However, to get the remaining two corners in
the correct location, there must be an increase in curvature in the
middle of the soft regions as well. We propose that these corners
form due to inertial effects at the center of the soft regions. As the
stiff regions contract more forcefully, the neighboring nodes of

Fig. 5 Squareness for simulated and actual wombat feces. (a) The relationship between curvature and aziumthal position. The curvature at one point in
time (t = 7.9 s) during a contraction is shown by the black solid line. To evaluate squareness this curvature is correlated to the corresponding reference
curvature shown by the blue dotted line. The reference curvature shape is defined using the variable l. Decreasing l corresponds to greater peaks in
curvature, and greater squareness S. (b) The time course of squareness S during a series of intestinal contractions. Insets show the simulation shape at t =
0, 7.9, and 30 s. The oscillations in squareness correspond to each contraction. (c) An array of 36 wombat feces found on Maria Island in Tasmania. The
blue outlines indicate the measured shape using image analysis. The numbers below each feces correspond to the calculated squareness. (d) A histogram
of squareness of natural wombat feces from part (c), demonstrating a mean squareness of 0.14 and a standard deviation of 0.1.
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these regions are also dragged towards the center. Conversely, the
farthest nodes from the stiff regions are the middle nodes of the
soft regions. Their added mass causes them to lag behind, creating
an increase in curvature.

As evidence for this physical picture, we perform a parameter
sweep in Reynolds number, shown in Fig. 6c. The stiffness ratio is
kept fixed at C = 4, and the Reynolds number is varied by
manipulating the damping b. As expected, the peak squareness
of the simulations increases with Re. The simulation becomes less
reliable for Reynolds number approaching 1, due to unphysical
behavior such as the intestines crossing itself, which is permitted
by the 2D nature of our simulations. Discounting the point at
Re near 1, linear regression gives S = 0.6 + 0.04 log(Re), R2 = 0.57.
The simulation show very shallow gains in squareness between
Re = 10�4–10�2, but then a significant increase in squareness at
Re = 10�1. Fig. 6a shows the full 2D parameter sweep of both the
spring stiffness ratio, C, and the Reynolds number. Generally,
squareness improves for both higher spring ratios and higher
Reynolds number, up to Re = 10�1.

As an additional test of our proposed mechanism for corner
formation, we consider the case of three periods of stiffness.
With three stiff regions and three soft regions, we expect six
corners to form. When running the simulation with three
periods of stiffness, we expect a transient hexagon. While the
hexagon is barely recognizable, its presence is illustrated by the
six peaks in curvature (see Fig. 7). That is to say, if an animal
were to evolve 3 or 4 periods of stiffness along the circumfer-
ence of their intestines, we predict that their feces would take
the shape of hexagonal or octagonal prisms.

3 Discussion

In this study, we show that a combination of unique material
properties and muscular contractions are necessary for wombats
to produce feces with square cross sections. We discover the
wombat intestines have non-uniform stiffness along the circum-
ference, in part due to variations in muscle thickness. When
intestines conduct their regular peristalsis, digesta is moved
towards the anus. Typical peristalsis is uniform in all azimuthal
directions because the intestines themselves are uniform. How-
ever, the non-uniformity in the wombat intestines cause amplified
contractions in distinct pre-set locations. Over many cycles, these
non-uniform contractions, along with inertial effects, encourage
the preferential movement of feces and the sculpting of the
corners. While these inertial effects seem unlikely in a system
with such a low Reynolds number, oscillatory motion may cause
inertial instabilities at lower-than-expected Reynolds numbers.27

The flat trend in squareness for simulations at Re = 10�4–10�2

suggests that continued reduction of Reynolds number would have
negligible effects on the squareness. Multiple contractions of short
duration may reduce the magnitude of radial velocities and thus
the damping, in comparison to the damping of a single large
longer contraction.

Our study shows corners forming in less than 10 contraction
cycles. This early corner formation is not realistic because our
model does not model the non-Newtonian nature of the feces.
With contractions occurring every couple of seconds26 over a
time of 5 days,15 the feces actually experience on the order of
100 000 contractions. We believe that these missing details may

Fig. 6 Regime diagrams of shape as a function of spring stiffness ratio C and
Reynolds number Re. (a) Qualitative 2D sweep of C and Re, showing the peak
squareness in the simulation. (b) The relationship between squareness S and
spring stiffness ratio C, with solid points given by simulation and line given by
linear best fit. The open symbol indicates the squareness of biological wombat
feces, with error bars giving the standard deviation in the squareness. (c) The
relationship between squareness S and Reynolds number. Solid symbols give
the simulation data, and open symbols denote the biological wombat square-
ness and our estimate for its Reynolds number.
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explain why the model at the lowest Reynolds numbers only
shows the initial formation of corners, especially in the soft
regions, and why these corners never become sharp. We
suspect that as the feces becomes drier, the yield stress nature
of the material makes it increasingly capable of holding its
cubic shape. Moreover, cubes are found only in the distal colon,
and not the proximal colon, despite the periodic tissue thick-
ness found in both regions. Future modeling that takes into
account the effects of feces dryness might be able to resolve the
onset of cubing in the distal colon.

In this work, we focus on the formation of the feces cross
section, which involves four faces out of the six. We hypothesize
that the axial length of the cubes is set by mechanical drying
instabilities. As lava cools, it shrinks, generating stress in the
material. This stress is relieved if the lava cracks at regular
intervals.8 This is the mechanism underlying the formation of
hexagonal columnar jointings and similar structures in drying
corn starch cakes. While hexagons have been observed in these
planar surfaces, and radial cracks have been observed in a circular
anulus,28 the crack structure occuring in drying cylinders remains
unknown. Our preliminary work on drying corn starch suggests
that lateral flat cuts as observed in wombat feces is one possibility,
and may account for the remaining two faces of the cube.

The significance of cubic feces in evolution is ripe for future
work, and we suggest some potential directions here. It is well
known that wombats deposit aggregations of feces on promi-
nent surfaces, such as rocks or logs, as exemplified in Fig. 1b,
and it is widely hypothesized that their cubic shape facilitates
the feces remaining on the surface. In preliminary tests, we
explored the ability of cubic feces to prevent rolling and
bouncing. We formed balls of dough in the same shape and
size of wombat feces and dropped them from a height of 20 cm,
comparable to the height of an adult wombat anus. When the
feces landed on flat surfaces, cubes travel farther than spheres.
When dropped onto inclined surfaces of 81, cubes end up
20 cm closer to the original impact site than spheres on average.
Similar such tests could easily be done with natural substrates.

It is possible that the feces’ cubic shape increases the
surface area so that it can facilitate olfactory communication.
Elevated scent-marking is a common behavior in many mam-
mals and is hypothesized to increase scent dispersal and
visibility.29,30 The purpose of scent-marking is typically
territorial,30,31 however there is evidence that feces are also
used in social communication32 or communicating reproduc-
tive status.33

4 Conclusion

In this study, we show that wombats form corners in their feces
using intestinal contractions coupled with the unique non-
uniform material properties of their intestines. The questions
of how and why wombats form cubic feces make up a compel-
ling case study of the intersections between physiological,
behavioral, and evolutionary ecology. However, they also have
value in a range of other fields, particularly as a novel method
of cube formation in manufacturing, and clinical pathology
insight into the effect of human illnesses changing the tensile
properties of the intestinal tract.

5 Materials and methods

Wombat tissues and fecal samples are all obtained from humanely
euthanized individuals that were the victim of vehicle collisions. In
this study, we present data from 3 wombat dissections. All dissec-
tions are performed after the specimen is frozen and thawed. In
2018, we dissect a young female wombat (2–3 years old). In 2019,
we dissect an adult male wombat (42 years old). And in 2020, we
dissect a young male wombat (o2 years old).

5.1 Histology

We perform E&H staining on tissue samples taken every 1 cm
along the entire circumference of both the proximal and distal
colons. This sampling and staining was performed 3 times for

Fig. 7 The results of simulation using 3 stiff regions. (a) A hexagonal feces is formed with barely noticeable corners. (b) The relation between curvature
and y, more clearly showing the six peaks in curvature in part (a).
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both the proximal and distal colons at locations separated by 1
cm axially in their respective regions. Sections were cut at
thicknesses of 14 to 19 microns. The staining allows for the
visual identification of the four major tissue layers: mucosa,
glandular layer, circular muscle, and longitudinal muscle. We
measured the thickness of each layer underneath a microscope
using NIS-Elements software (see Table S1, ESI†).

5.2 Dryness testing

We evaluate fecal water content in the lower proximal colon
(2–2.5 m from the anus) and distal colon (0–0.5 m from the anus).
Five representative pieces of fecal material are extracted from the
distal colon (all pieces are formed and distinct cubes) and two
from the proximal colon (pieces not distinct, derived from the
continuous slurry), they are weighed, dried at 60 1C until they no
longer changed in mass (96 hours) and then re-weighed.

5.3 Tensile testing

The cut is made at a 50 cm distance from the anus. To measure
the local stiffness at different azimuthal locations, we laser-cut
a stencil to draw tick marks every 4 mm along the circumfer-
ence of a 5 cm long tissue sample of proximal and distal colon.
A ZXUEZHENG surgical marker (0.5 mm, from Amazon) pro-
vides the most visible tick marks. Two such rows are drawn
1 cm apart on each sample. To perform the tensile test, the
sample is cut longitudinally.

Both ends of the cut tissue are clamped down with custom-
made clamps (see Fig. 3e). Each clamp is made from laser-cut
acrylic with sandpaper hot-glued to the inside, preventing the
tissue from slipping. From one clamp, the sample is hung off a
rod, while the bottom of a disposable water bottle is hung off of
the bottom clamp. The sample is stretched by adding incre-
ments of water to the bottle. The clamp and bottle weigh 51.6 g.
The sample is stretched by adding water to the bottle, a total of
7 times, in 25 ml increments. The sample is allowed to settle
before the next increment of water is added. The test is
recorded and we use the video labeler app from the Computer
Vision toolbox in MATLAB to track the location of the interior
end of the left row of tick marks. To get a full 3601 test of the
sample, 2 adjacent samples are prepared and the longitudinal
cut is performed 1801 offset of the other, allowing us to test
regions of the tissue that would otherwise be covered by the
clamps. A video of the test is shown in Video S3 (ESI†). Linear
regressions of the local tensile data are shown in Fig. S1 and S2
(ESI†).

As shown in Fig. 3f, the first sample is denoted by blue dots
while the other is denoted by red diamonds. The black line
shows an averaging between the two samples at that azimuthal
location, ignoring the edge-most data points of both samples
due to edge effects from clamping down on the tissue.

5.4 Solving the equilibrium model

The intestine simulation does not attempt to model the non-
Newtonian nature of the feces itself. Instead it represents the
feces phenomenologically as increased damping and mass,
aggregated at the intestinal walls. Without the feces, the nodes

may take on conformations that allow the springs to cross
themselves in 2D space, which is not physically possible in the
biological system. We find that using the equilibrium solution
as the initial state helps prevent intersection of nodes during
the contraction simulation.

The wombat intestines are modeled by a ring of springs (see
Fig. 4a). The equilibrium shape is described by the length of the
springs in the soft region lA, the length of the springs in the stiff
region lB, the angles between the springs in the soft and stiff
regions, fA and fB respectively, and the angle at the interfacial
nodes between the stiff and soft regions fAB. A constant
pressure, P, is exerted outwards on the nodes until the springs
come to an equilibrium length. To solve for 5 unknown values,
we require a system of 5 equations. Four of the equations come
from local force balances: parallel to the angular bisector in the
soft region (see eqn (5) and Fig. 4b) and the stiff region (see
eqn (6)), and for the interfacial node, both parallel and
perpendicular to the angular bisector (see eqn (7) and (8)).
The equilibrium shape forms a convex 4n-gon requiring the
summation of the angles to be p(4n � 2) (see eqn (9)).

tan fA=2ð Þ ¼ 8nk lA � l0ð Þ
PlA

(5)

tan fB=2ð Þ ¼ 8Cnk lB � l0ð Þ
PlB

(6)

tan fAB=2ð Þ ¼ 8nk lA þ ClB � ðC þ 1Þl0ð Þ
P lA þ lBð Þ (7)

tan fAB=2ð Þ ¼ P lB � lAð Þ
8nk lA � ClB þ ðC � 1Þl0ð Þ (8)

p(4n � 2) = 2(n � 1)(fA + fB) + 4fAB (9)

In eqn (5)–(9), n is the number of nodes in each of the 4 sections
of the ring, l0 is the resting spring length, k is the base spring
stiffness, and C is the spring stiffness ratio between the stiff
and soft regions.

The equilibrium shape is numerically calculated using the
MATLAB function fsolve. Both options MaxIterations and Max-
FunctionEvaluations are set to 108. Each of the 4 regions are
composed of n = 50 nodes as increasing n greater than 50 did
not seem to change the resulting shape. The following are the
parameters used in the default simulation. The unstretched

length of every spring is l0 ¼ 2 sin
p
4n

� �
, resulting in an

unstretched ring of radius R0 = 1 cm, matching the unstretched
radius of the wombat’s distal colon. The base spring stiffness is
k = 0.1 104 g s�2, and the stiffness of each spring was 4nk and
4Cnk for the soft and stiff springs respectively. The spring
stiffness ratio is C = 4. Multiplying the spring stiffness by 4n
normalizes the overall stiffness of the ring to be independent of
the number of nodes used in the simulation and results in the
softer spring stiffness to be equivalent to 0.2 N mm�1 as found
from tensile testing. The function fsolve requires an initial
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guess at the solution, (lA,lB,fA,fB,fAB) = (l0 + 10�4,l0,(4n � 2)p/
(4n),(4n � 2)p/(4n),(4n � 2)p/(4n)).

The simulation fails to run if the equilibrium solution
cannot be found. This may happen when the spring stiffness
ratio C is too close to 1. When C = 1 the system is over-
constrained and, as described to the MATLAB function fsolve,
cannot find the equilibrium solution. We find this happens
when C o 2. MATLAB may also fail to find the equilibrium
solution if k is too high. This may be due to eqn (5)–(8) holding
too much weight, not allowing fsolve to find a solution that also
satisfies eqn (9). Due to this constraint, we measure all masses
in units of 104 g, to keep k o 1.

5.5 Simulating the model intestine contractions

The contraction is simulated by solving the equations of motion
according to Newton’s second law, F = ma, eqn (10). Each node is
subject to two neighboring spring forces and a damping force.

m _~vi ¼ ki ~xiþ1 �~xik k � l0ð Þ dxiþ1 � xið Þ
þ ki�1 ~xi�1 �~xik k � l0ð Þ dxi�1 � xið Þ � b~vi: (10)

where 8-u8 indicates the magnitude of vector u and û means that
vector u is scaled to be a unit vector. We close the system with the
definition of velocity,

~vi ¼ _~xi (11)

The differential equation is solved over a time period of t =
[0, 40 s] using the MATLAB function ode45. For simulations
involving changes in damping, the simulation time is extended
linearly as damping is increased, according to tf = 105b, where tf

is the duration of the simulation, and b is the damping
coefficient. The equilibrium solution is used to get the initial
xy coordinates of all 4n nodes and their initial velocities are
set to 0.

The following are the parameters for the default simulation.
The added mass of each node is set to m = 4.5 � 10�6 104 g.
This mass is calculated by multiplying our 2D density of feces,
r2D = 1 g cm�2 by the equilibrium mean radius squared, R2, then
dividing by the number of nodes. Recall that mass must be
measured in units of 104 g to keep the base spring stiffness
k low. The damping coefficient is set to be b = 4.5 � 10�3 104 g s�1.
To contract the system, the rest length of the springs is decreased,
from l0 to l0/4. The system oscillates as a square wave between l0

and l0/4 with a period t = 1 s. Over the simulation time, this
period results in 40 simulated oscillations and Re = 10�3.

5.6 Calculating curvature

The shape of the simulation is analyzed by calculating the
curvature at 20 azimuthal positions. Nodes from the simulation
are translated so that the center is located at (0,0). They are
then binned together according to their y location in polar
coordinates. While in polar coordinates, the points are rotated
so that the center of the bin is at y = p/2. The points are mapped
backed to Cartesian coordinates so that we may fit a degree 2
polynomial y = f (x) to the points. From the polynomial, the
average curvature of those points is calculated according to

eqn (12).

kavg ¼
1

xmax � xmin

ðxmax

xmin

f 00ðxÞdx
1þ f 0ðxÞ2ð Þ3=2

¼ 1

xmax � xmin

f 0 xmaxð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 0 xmaxð Þ2

q � f 0 xminð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 0 xminð Þ2

q
							

							
(12)

5.7 Quantifying squareness

The wombat feces themselves are not perfect cubes, as the
corners, while distinct, are clearly rounded. There exist several
metrics for measuring a shape’s roundness.24 For measuring
squareness, we found a single existing metric called the
squircle.25 Attempts to use it on our biological data showed
that it was not robust to noise (see more discussion in the ESI†).
We propose a new metric to evaluate squareness S which comes
from comparing the measured curvature k(y) to a reference
curvature signal.

When considering the reference curvature signal, note that a
circle displays constant curvature for all values of y, while a
square has k(y) = 0 for all values of y except k(y) = N at each of
the 4 corners. The template for our reference signal is then
based upon the following impulse function

flðxÞ ¼
1

l
e�jxj=l: (13)

We can check the validity of this equation by considering the
limit as l tends to infinity: liml-Nfl(x) = constant, behavior
which is similar to the curvature signal of a circle. Likewise, for
the limit as l tends to zero, liml-0fl(0) = N and fl(x|x a 0) = 0,
similar to the curvature signal around a single corner of a
square. We will use l to describe the sharpness of a shape’s
corners. This impulse function also has the added benefit that
the area under the curve is constant for all l.

ð1
�1

1

l
e�jxj=ldx ¼ 2 (14)

We use this property to scale the function based on the size of
the shape. For a circle with area A

kcircleðyÞ ¼
ffiffiffiffi
p
A

r ð2p
0

kcircleðyÞdy ¼ 2p

ffiffiffiffi
p
A

r
: (15)

We may then scale our reference curvature signal for any

arbitrary shape such that the area under the curve is 2

ffiffiffiffiffi
p3

A

r
.

To match the 4 peaks in curvature that a square displays, we
express the curvature as a piece-wise function, mapping the
original infinite domain to a finite one. In doing so, our
function’s area under the curve is no longer conserved over l.
We remedy this by scaling by the integrated area under the
curve, from zero to p/2, which is relevant for each of the pieces
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of the piecewise function. Overall we have

krefðy; lÞ ¼

ffiffiffiffiffi
p3

A

r
1

l
e�j tanðy�cÞ=lj


 �
Ð p=2
0

1

l
e� tan ~yd~y

(16)

where

c ¼

p=4 y 2 ð0; p=2Þ
3p=4 y 2 ðp=2; pÞ
5p=4 y 2 ðp; 3p=2Þ
7p=4 y 2 ð3p=2; 2pÞ

8>><
>>:

The reference function displays discontinuities at y ¼ np
2

, 8n A

Z. From kref, we inherently get the first component of our
squareness metric in l, in which high values of l indicate the
shape is very circular, while values close to 0 indicate the shape
is square.

To match the measured k(y) to the proper value of l, we
cross-correlate the signals k(y) and kref(y,l) using the xcorr
function available in MATLAB (see Fig. 5a). Both signals must
be sampled at the same values of y. The measured k(y) is made
continuous by linearly interpolating between values. The func-
tion xcorr finds the correlation between signals at varying lags,
rotating the shape until the curvature signals are aligned. When
performing the cross-correlation, we input three periods of
each curvature signal, y = [0,6p] and specify that the lag may
not be more than 2p. This prevents xcorr from correlating to
different signals by only comparing a small part of each signal.
We numerically find the value of l that yields the maximum
correlation x using MATLAB’s built-in fminsearch and an initial
guess of l = 1. With the optimal value for l and the corres-
ponding correlation x, we calculate squareness as

S = x10(1 � 2 arctan(l)/p). (17)

The range of S is (0,1) where S = 1 indicates that the shape is
perfectly square, and S = 0 indicates that the shape is either
perfectly circular or very much not square. The correlation, x, is
raised to the 10th power. This exponent weights the correlation
to ensure that the shape is given a high score only when it has 4
peaks in curvature rather than just 2 very high peaks in
curvature. In practice, 2 high peaks in curvature may result in
a correlation of x E 0.9. Raising the correlation to the 10th
power sufficiently punishes these non-square shapes.

We illustrate the evaluation of squareness with a numerical
example. Consider a single frame at t = 7.9 s from the square
simulation using the default parameters listed above (C = 4, m =
4.5 � 10�6 104 g, b = 4.5 � 10�3 104 g s�1). The function ode45
gives the xy coordinates of all n nodes at each time point. From
these coordinates, we calculate curvature k using eqn (12) for
each bin of nodes. We then get a function k(y) for any arbitrary
value of y by linearly interpolating between calculated curvature
values. We sample the curvature k(y) every 0.61 (0.1 radians)
from 0.61 to 359.41. The resulting vector of curvature values is
then repeated 3 times so that cross-correlation by the function
xcorr will not be inflated by comparing too few data points.

Using the function fminsearch we compare the curvature k(y)
to the reference curvature kref(y,l) as described by eqn (16),
sampling at the same values of y, searching for the value of l
that yields the highest cross-correlation. For t = 7.9 s, this
optimal value is l = 1.5 with a cross-correlation of x = 0.98.
Fig. 5a shows the curvature from the simulation (solid black
line) as well as the reference curvature kref(y,l = 1.5) (dotted
blue line). The range of l is (0,N), so we map l to a range (0,1)
with 1 indicating highest squareness and multiply it with the
cross-correlation value x10 as in eqn (17). The resulting map-
ping, from eqn (17) yields a squareness of S = 0.3. We repeat
this procedure for every time increment in the contraction.
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