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The growth of giant pumpkins: How extreme weight influences shape
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a b s t r a c t

Great morphological differences exist among fruits and vegetables. In this combined experimental and
theoretical study, we predict pumpkin shape evolution and maximum size based on their material
properties. Using time-lapse photography and measurements collected by volunteer farmers, we show
that as pumpkins grow, they morph from spherical to pancake shapes, flattening up to 50% in height-to-
width aspect ratio. By compressing whole pumpkins in material-testing machines, we find that the
elastic response of the pumpkin is insufficient to account for the large deformations characteristic of
large pumpkins. We hypothesize that pumpkin flattening is caused by the weight of the pumpkin
retarding its normal growth processes. We test this hypothesis using a mathematical model that
assumes plant growth is stimulated in response to a tensile yield stress. We are able to predict pumpkin
shapes consistent with those observed. The observed growth plasticity allows the fruit to redistribute
internal stresses, thereby growing to extreme sizes without breaking.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The development of shape in plants is a century-old problem
[1] that has made recent advances due to the combined inter-
disciplinary efforts of plant, molecular and mathematical biology.
A challenge inherent to this problem is the multiple length scales
involved, particularly in embryogenesis or fruit growth, where an
ovary of characteristic size 100 mm210 mm will reproduce over
time to become a 10-cm fruit, or in the case of this investigation, a
one-meter fruit. During this vast change in size, the plant genome
regulates growth through feedback with the multi-parameter
chemical and physical state of the fruit [2]. The chemical and
biological changes in cells during growth [3,4] are beyond the
scope of this study. Instead, we focus on the use of a simple
computational model, which approximates elasto-plastic plant
material, to investigate the mechanics of extreme growth.

Given the computational nature of our study, it is worthwhile
to briefly review previous mathematical approaches here. Goriely
et al. [5] and Taber [6] provide comprehensive reviews of
continuum models used to model the growth of plant and animal
tissues. A common theme among these models is the decomposi-
tion of strain into components due to elasticity and growth. In
another study, Vandiver and Goriely [7] explain how differential
growth in the plant can generates residual stresses, such as
tension, and consequently how these tensions can rigidify and

strengthen the plant. Dumais et al. [8] has shown how the
behavior of certain materials like rubber balloons can be used
as models for root tip growth. Coen et al. [9] review how the
growth of blossoms can be computationally modeled using
formulations of elasticity and growth rules. While most previous
models take one-dimensional or two-dimensional approaches to
growth, we take advantage of computational methods that are
particularly suited for examining three-dimensional changes.

We apply a lattice spring method (LSM) [10,11], a computa-
tional model, to estimate pumpkin deformation. Originally
derived for performing atomistic simulations [12], this method
can be applied for modeling elastic solids in the continuum
mechanics approximation [10,11,13]. Our computational lattice
model constitutes a means for examining the influence of the
visco-plastic properties [10] on development of fruit shapes under
different environmental conditions. Furthermore, by removing
individual bonds, LSM allows modeling of crack formation and
propagation thorough solid materials [14,15]. Such a scenario is
often observed in giant vegetables where cracks may appear as a
result of the extremely fast growth.

The study of large organisms can provide us insight into the
growth and stress limits of tissues and can provide useful testing
grounds for hypotheses about biomechanics. The largest organisms
such as trees and dinosaurs, push the envelope of growth, metabolic
and respiratory processes occurring in the whole organism and its
constituent cells. For instance, the maximum height of redwood trees
is 130m, due to the inability of trees to syphon water at these height
[16]. Water-walking insects have a maximum size of 30 cm because
of surface tension effects [17]; the maximum size of prehistoric
and extant dragonflies is 1 m and 20 cm, respectively, because of
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changes in atmospheric gas composition [18,19]. By considering
the growth of large fruits, as will be done in this study, one can
amplify the effects of gravity on their development. For all these
organisms, mechanical forces determine their maximum size and,
to some extent, their behavior. Since the length and time scales of
these organisms exceed those of typical sizes, studying large
organisms is inherently difficult and information on them is
sparse. To study giant plants we are forced to accept the
uncontrolled conditions in which they are bred and grown
because of the great personal care required by farmers to ensure
growth at these sizes.

Annual agricultural competitions starting in the 1800’s and
the introduction of the Guinness book of World Records [20]
in 1951 have driven amateur farmers to breed fruits and vege-
tables for size (Fig. 1). Over the years, the largest fruits and
vegetables entered in these contests have grown to 3–100 times
their normal weight, increasing yearly: recent records show that
onions can exceed 10 lb and carrots over 50 lb (Fig. 1). Fig. 2a
shows the growth rate of several record-breaking fruits and
trees [21,22]. The leader among these giant fruits and vegetables
are pumpkins which can grow to over 1000 lb within 4 months,
increasing in weight by nearly 50 lb per day, a rate comparable
to that of the largest trees (the black squares in Fig. 2a). The
fruits borne by pumpkin plants are indeed giants in the sense that
they are up to 100 times larger than average fruits produced by
normal pumpkin plants, as shown in Fig. 2a. While neither the
genetics nor growth conditions for these plants are tightly
controlled, current records indicate that giant pumpkins may
indeed be among the largest and fastest growing organisms in
the world.

The motivation for this study is the following observation: fruits
and vegetables at large sizes have drastically altered shapes. As
shown in Fig. 1, ground fruits tend to be squashed, in accordance
with the compressive forces generated by self-weight. This ten-
dency is also shown in Fig. 2b which shows the aspect ratio of
fruits as they increase in size. Note the largest fruits like pumpkins
decrease in height-to-width ratio by 50% as they grow. We
hypothesize that the effects of gravity play a critical role in the
development of these abnormal shapes.

The growth of giant pumpkins is discussed in popular litera-
ture [23] and online pumpkin growing networks, which result
from the collaborative effort of hundreds of growers. We sum-
marize their relevant natural history here, although we caution
the reader as some of this information is necessarily anecdotal.
Giant pumpkins are all bred from a single variety called ‘‘Atlantic
Giant pumpkins,’’ patented by Howard Dill in 1979. Since then, no
other pumpkin variety has become a world champion and most
contenders are descendants from this seed. A major contributing
factor to the size of giant pumpkins is their prolonged growth
cycle. They are typically sown in early May and harvested in late
September, a complete growth cycle of 140–160 days, in excess of
the 90–120 day cycle of normal pumpkins.

The giant pumpkin growth cycle is composed of three phases.
In the first 10 days of growth, known as the seedling stage, the
planted pumpkin seeds begin to sprout leaves. In the subsequent
60–70 days, known as the plant growth stage, the plant grows
sufficiently to develop male and female flowers. Once their
flowers are mated, the fruiting stage begins. During these 70–80
days, the giant pumpkin grows at rates greatly exceeding that of
normal pumpkins.

Fig. 1. Giant fruits and vegetables. Hanging fruits include (a) Apples, (b) Lemons, (c) Jackfruit, (d) Sea coconut; Ground-level fruits/vegetables include (e) Squashes,
(f) Watermelons, (g) Cabbage; Underground vegetables include (h) Onions, (i) Carrots, (j) Rutabaga, (k) Sweet potatoes. Gravitational forces cause these fruits/vegetables to
have odd shapes at large sizes. Fruits suspended from trees are subject to tension forces and tend to be elongate. Ground-supported bodies, subject to compression, such as
the squash, melons and leafy vegetables tend to be flat. Underground vegetables, supporting the weight of the surrounding soil, tend to grow radially outward rather than
straight down. Images (a,b,e) re-printed courtesy of Guinness world records [20]; (e) grown and photographed by Dutch Brad; (c) by Louis Brown for EzineMark.com;
(k) by Brendan Borrell of Scientific American; (f) by Staurt Bauer and Julie Morrison of the Flint Journal; and (g,i) grown and photographed by John Evans and the World
Carrot Museum, UK.
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Pumpkins have attracted the interest of plant biologists and
geneticists because of their great variety of shapes [24]. Taxono-
mically, pumpkins are a gourd-like squash of the genus Cucurbita
and the family of gourds Cucurbitaceae. Edmund Sinnott wrote a
number of classical papers (1936–1945) on the growth of Cucurbita
that are worth reviewing here. In 1936, Sinnott [25] used breeding
techniques to identify genes that explicitly govern pumpkin shape
(width to height ratio). He considered two genetic lines of
pumpkin, one shaped like a sphere and the other like a flying
saucer, or ‘‘patty-pan.’’ He found that the first generation (F1) was
dominated by the spherical shape and the second generation (F2)
was 3/4 disk and 1/4 sphere, as suggested by a single gene subject
to Mendelian inheritance. In fact, Edmund states ‘‘the shape of the
fruit is inherited independently of its size’’, where he defines a
shape index as the ratio of length to width, the same index that we
use in this investigation [26]. While Sinnott’s observations is
certainly true for low fruit-weights, we show in this study that
fruits can become flattened as they increase in weight.

Pumpkins have a two-stage pattern of development that are
common to other fleshy fruits [27,28]. In the first stage, the cells
grow in number; in the second stage, they grow in size. Cell
division rate is independent of cell size, despite that larger cells
must gather more material before they can divide. Increase in cell
size is interrupted at each division, in which each of the daughter
cells assume half the volume of their parent cell. After the last cell
division, increases in fruit size result exclusively from increases in
cell size. The sizes of cells can vary, depending on their position
within the fruit. For example, pumpkin cells decrease in size from
the inside to the outside of the fruit (as in berry, cucumber and
grape), whereas in apples, cells in the core are smallest. As the
pumpkin diameter grows from 2 to 100 mm, cells on the endo-
carp (inside surface) of pumpkins can increase from 20 to 400 mm,
whereas cells at the epidermis (outside surface) may either
decrease or stay the same size.

Sinnott [27] studied the cells of both large-fruited (300 mm
fruit diameter) and small-fruited pumpkins (100 mm diameter).
Larger-fruit types have larger ovaries (22 mm) compared to
smaller fruit-types (11 mm), while the ovarian cells in these types
are approximately the same size (75%). Larger fruits have a

duration of cell division that is 5 times longer than that for small
fruits, consequently leading to a greater number of cells pro-
duced. Moreover, larger fruits also have a greater degree of cell
expansion than smaller fruits. For similar trends for other fruits,
the reader is encouraged to consult the review by Coombe [28].

Cell shape is generally independent of fruit shape, with most
cells being roughly spherical, be it in flat, spherical or bottle-
shaped pumpkins. Histological studies [26] have shown that the
change in shape is governed by differences in division rates along
the axes of the fruit. For example, in flat pumpkins, cells tend to
divide more frequently in the plane defining the widest region of
the pumpkin. Sinnott [25] finds that the pumpkin grows in such a
way that its length L and width W of the fruit are related by the
power law L!Wk where the allometric constant k differs between
each line of pumpkin. Other geometric variables, such as the width
of the upper lobe of bottle gourds, are also related to gourd length
according to their own allometric constants. In our study, we will
pay particular attention to characterizing gourd thickness (Fig. 3),
a variable that is intimately linked to the strength of the fruit, but
has otherwise received little attention by previous investigators.

Cellular growth is driven by turgor pressure inside the cell,
which results from the cell varying its solute concentration and
hydraulic conductance [8]. When turgor pressure is reduced to less
than 30–50% of its normal value, cell expansion stops completely
indicating that some threshold level of turgor pressure (yield
stress) is necessary to drive wall extension [29]. This behavior is
accounted for in the Bingham model [5] for viscoplastic growth,

_e ¼Fðs$syÞ, sZsy ð1Þ

where _e is the strain rate, F is the material extensibility (inverse
viscosity), s is the stress and sy is the yield stress. We assume that
the pumpkin grows quasi-statically, so that we can neglect time-
dependence. The constitutive relation for this plastic behavior is then

s¼
Ee if eoey
Eey if eZey

(
ð2Þ

for axial loads. Physically, elastic deformation (of cell wall material) is
associated with the reversible stretching (or uncoiling) of the
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Fig. 2. (a) The relation between the growth rate (kg/year) and relative size of the largest plants in the world. Relative size is given in terms of the ratio between a plant’s
maximum and average weights. Note the pumpkins are in the upper right quadrant of the plot, indicating that they are among the largest and fastest growing plants.
(b) The relation between aspect ratio (height/width) of a fruit to its maximum weight W (in kg). Pumpkins are in the lower right, indicating that they are the heaviest and
flattest of the giant fruits. Average fruit weights and sizes were measured from a local supermarket, Guinness book of world records [20], and databases provided by
nonprofit conservation organizations, such as The National Register of Big Trees (American Forests.org) [21], The Gymnosperm Database (Christopher J. Earle) [22], PLANTS
database (USDA Natural Resources Conservation Services).
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(hemicellulose) bonds linking microfibrils [30]. Plastic deformation
occurs when these bonds rupture and allows microfibrils to slide
against each other. The result is permanent deformation when the
material is unloaded [31]. This yield stress model is similar to the
Lockhart equation of plant growth [32,33], in which a threshold
turgor pressure is needed to generate yielding of the cell wall
(a volumetric strain). The growth of pumpkins, as with other fruits,
relies upon the dual processes of cellular expansion and cellular
division. The former process is driven by turgor pressure. However,
the latter process may be influenced by gravitational force. This force
is larger in giant pumpkins, manifesting itself as abnormally large
tensile and compressive stresses on the pumpkin bottom and top,
respectively. As a result, normal cellular division processes may be
interrupted or accelerated, resulting in anomalous shapes of the fruit.

2. Methods

2.1. Giant pumpkin measurements

We recruited 50 volunteer farmers (listed in the acknowl-
edgements section) to share with us data on their giant pump-
kins. Giant pumpkins of assorted strains were grown in the
Northeastern United States in the months of July through October
during the years 2002–2009. Pumpkins were positioned so that
the stem-blossom axis was parallel to the ground. Methods on
watering, fertilizing, shading and care for giant pumpkins are
given in Langevin [23] and online. At the end of the growing
season, giant pumpkins were weighed using balances provided at
agricultural competitions.

The weight of five pumpkins was also monitored daily by a
volunteer (Andy Wolf) during the growth season. Here, pumpkin
weight is estimated according to so-called giant pumpkin weight
tables, a standardized method of pumpkin weight-estimation
accepted by the giant-pumpkin growing community. These tables
list correlations between pumpkin weights and external measure-
ments of their dimensions, first developed in 2001 by Len
Stellpflug [23]. These tables were created using a polynomial
regression to determine a best fit for 1194 sets of pumpkin
dimensions and weights ranging between 0.2 and 408 kg. Details
on the accuracy of this method were not available. However, we
note that method has met the stringent needs of the competitive
growing community for over a decade.

If the pumpkin were simply spherical, a single measure of the
circumference would suffice to determine its weight, given the

pumpkin’s density. However, the pumpkins are often flattened at
large sizes. Consequently, the pumpkin’s weight is estimated using
the average of three measures of the pumpkin’s circumference
(at mutually perpendicular directions, all with their origin in the
center of the pumpkin). The first measurement is the circumference,
measured in a horizontal plane parallel to the ground. The next
two measurements are measured vertically by placing a tape
measure across the pumpkin and the ends of the tape measure
perpendicular to the ground. The first of these include the over-the-
top measurement, in which the measurement is done along the
stem-blossom axis. The second, the side-to-side measurement, is
measured perpendicular to the stem-blossom axis, often along the
pumpkin’s widest girth. The change in these variables with respect
to time will be shown in our results.

At the end of the growing season, pumpkins were bisected,
through the plane formed by the direction of gravity and the
stem-blossom axis. Cross-sections of the pumpkins were photo-
graphed and rulers and tape measures were used to measure the
thicknesses, diameters and heights of the pumpkins. Data from
volunteer farmers was combined with daily time-lapse videogra-
phy of a single giant pumpkin filmed by a volunter, Ryan Foss
[34]. The video is shown in the Supplementary Video section.

2.2. Instron experiments

Twenty-four pumpkins of diameter 6–30 cm were purchased
from our local supermarket (in Atlanta). The pumpkins investi-
gated in this study include the cultivars (cultivated plant vari-
eties) of any one of the species Cucurbita pepo, Cucurbita mixta,
Cucurbita maxima, and Cucurbita moschata. Ten pumpkins were
cut into cross-section and their weight and dimensions measured
using a laboratory scale and calipers. Using the remaining 14
pumpkins, we measured the stress and deformation response of
pumpkins (of weights ranging from 2.7 and 8.6 kg) squeezed
between two rigid plates in an Instron material-testing machine
(inset of Fig. 8). The Instron was strain-controlled, applying
sufficient force to increase in strain by 1% strain every minute.
Tests were terminated once an audible cracking of the pumpkin
occurred.

We note that the twenty-four pumpkins assayed using the
Instron may be from different breeds. They thus may have values
of elastic modulus, yield strain and fracture stress that are different
from those of giant Atlantic pumpkin. Regretfully, measuring the
material properties of actual giant pumpkins is quite difficult and

Fig. 3. Pumpkins ((a) whole and (b) in cross-section) increasing in diameter L from 6 to 140 cm. Scale bars, 10 cm. Note that the pumpkins begin growing spherically, but
flatten as they reach maximum size.
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nearly impossible. There are very few samples available, which are
spread out across the United States, making it difficult to collect
rigorous data on different sizes. We hypothesize that our measure-
ments for E and ey are correct within an order of magnitude. As is
shown in our elastic deformation data (the red dashed lines) in
Fig. 10, there is a common trend among the 24 pumpkins we
studied. This indicates that the material properties among our
sampled pumpkins are reasonably close in value.

2.3. Computational model

We model pumpkins as deformable spherical shells, whose
geometry is characterized by a height H, diameter L and thickness
of the shell t, as shown by the schematic in the inset of Fig. 7.
Deformation of the pumpkin is caused by a gravitational force per
unit volume rg where r& 1:0 g=cm3 is the density of the
pumpkin [35] and g & 9:8 m=s2 the gravitational acceleration.
The pumpkin resists this gravitational force by elastic deforma-
tion of its material.

As external forces increase, plant cells continue to stretch until
they exhibit a permanent tensile strain. In biology, the onset of
plastic deformation is defined as when residual strain exceeds
0.01 (given for generic plant materials by [30,28]). We therefore
estimate the yield strain to be of order ey & 0:01, beyond which
the plant tissue will be irreversibly deformed.

In reality, if the change in force is applied sufficiently slowly,
then plants can avoid breakage by either growing (in cell number
or cell size) or toughening the cell wall [4]. In this model, we
assume that the plant material properties remain constant.
Growth reduces the strain to a level egoey, thus preventing the
material from breaking, and permitting growth to still larger
sizes. To mimic the natural response of biological materials to
external forces, we replace ey with eg in Eq. (2). Because the
growth response is associated with positive strain, we assume in
our model that compression does not generate yielding. The
pumpkin material elasticity E& 1 MPa has been measured by
previous tests [31]; the critical tensile strain leading to growth,
eg , will be estimated using our modeling.

Using dimensional analysis, we write the height H/L of the
pumpkin as a function of three dimensionless groups: these
include the growth strain eg , the dimensionless thickness t/L,
and ratio of the pumpkin’s weight to elastic forces, rgL=E.
The problem of determining the pumpkin’s height reduces to
using experiments to obtain the relation

H
L
¼ f eg ,

t
L
,
rgL
E

! "
: ð3Þ

In our study, the pumpkin material, with Young’s modulus
E and Poisson’s ratio n, is represented by a network of springs
with Hooke’s constant k connecting nodes (point masses M). We
simulate growth by increasing the mass, and thus the gravita-
tional force, of all nodes in the pumpkin. Increases in weight will
necessarily generate elastic deformation of the pumpkin corre-
sponds to compression and stretching of the springs. Further
deformation is induced by plastic yielding of the network. Plastic
yielding at strains of eg corresponds to increases in the spring rest
length req, which mimics anomalous growth (the addition of new
cells and cellular growth at points of yielding [9]).

The elastic energy associated with a node at position ri is
EsðriÞ ¼ 1

2

P
jkijðrij$reqij Þ

2 (see Fig. 4). Here, rij ¼ jri$rjj is the length
of the spring between two nodes with positions ri and rj, r

eq
ij is its

equilibrium length, and kij is the stretching spring constant. This
results in a spring force Fs ¼ @Es=@ri. The dynamics of the solid
material is captured by integrating Newtons equation of motion
FðriÞ ¼Mi@

2ri=@t2, using the velocity Verlet algorithm [36] which
is commonly used in molecular dynamic simulations [37]. Here,
F is the total force acting on the node, which consists of the spring
force, the force due to shell-wall interactions, and a dissipative
force proportional to the node translational velocity. The latter
force is included to suppress elastic oscillations excited due to
shell deformations which are quasi-static in practice. We have
verified that this dissipative force is weak enough not to affect the
shape evolution.

For elasto-plastic materials when the material stress s reaches
the yield magnitude sy, the material starts deforming plastically
at constant stress. In our computational model, we mimic this
plastic behavior by dynamically changing the equilibrium spring
length req of individual springs. Specifically, when material strain
e¼ ðr$reqÞ=req exceeds the critical level eg , we assign a new value
to the equilibrium length reqnew ¼ reqðeþ1Þ=ðegþ1Þ. We introduce
plasticity only for positive strains, i.e. when the material is
stretched, while the compression is completely elastic.

The pumpkins three-dimensional shell (Fig. 4) is constructed
from four concentric layers of LSM nodes [38]. Using the Delaunay
triangulation technique [39], we distribute nodes in a regular
manner on each concentric layer. The layers are separated by a
distance that is equal to the average size of a triangular bond Dx
and are connected by springs between the nearest and next-
nearest neighbour nodes, with spring constants k and 2/3k,
respectively. For this arrangement of nodes and springs, the
Young’s modulus of the solid is approximately given by
E¼ 5k=2Dx, the Poisson’s ratio is n¼ 0:25 (which is consistent
with that found for typical plant materials, e.g. [30]) and the solid
density is r¼ 2M=

ffiffiffi
3

p
Dx3. In our simulations, the outside dia-

meter of the undeformed pumpkin is L ¼ 40, the density is r¼ 1,

Mj

Mi
kij

Fig. 4. The lattice spring network used to model the mechanics of the pumpkin shell. Masses Mi and Mj are connected by a spring with constant kij. A reduced number of
nodes, with respect to the model, reported.
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and the modulus is E ¼ 5/18, where values are given in lattice-
spring units. The number of LSM nodes in each layer1 is N ¼ 2562,
the average spacing between nodes is Dx& 0:033L, and the
thickness of the shell is t ¼ 0.14L.

We have validated our LSM simulation by breathing-mode
oscillations of the spherical shell and found excellent agreement
with theoretical results [40]. We have also found good agree-
ment with the experimental data we collected from the com-
pression Instron experiments with different pumpkins. Further-
more, we have verified that the change in grid resolution of our
computational model practically does not affect the simulation
results, indicating that the computational grid is sufficient to
resolve plastic deformation of pumpkins.

3. Results

3.1. Weight and geometry change

Fig. 5 show the relation between weight and time for six giant
pumpkins grown between 2002 and 2005 by Andy Wolf. Graphs
are labeled according to the final weight of the pumpkin and the

year the pumpkin was grown; time t¼0 corresponds to anthesis.
The mass M is described by a sigmoid function,

M¼ c=ð1þde$ftÞ ð4Þ

where t is time, and c,d,f are constants. Using least-square
analysis, we find that c¼ 380780 kg, d¼ 1697150, and
f ¼ 0:1170:01 s$1. The constants c and d provide the initial mass
measured (Mðt¼ 0Þ ¼ c=ð1þdÞ & 2:2 kg, the position of the inflec-
tion point (tinflection ¼ ðln dÞ=f & 51 days) and the final mass of the
pumpkin (Mðt¼ infÞ ¼ c& 380 kg). It is noteworthy that f is
constant across a broad range of final weights (320–640 kg).

Fig. 6 shows the relation between the three circumferences of
the pumpkin (one horizontal and two vertical). Clearly, the vertical
circumferences are similar indicating that growth is roughly
axisymmetric (where the axis is tangent to gravity and intersect-
ing the center of the pumpkin). The gradual increase of the
horizontal circumference over the vertical circumferences shows
that the pumpkins are gradually becoming squashed as they grow.

Fig. 7a shows the relation between dimensionless thickness t/L
and diameter L. Crosses represent the minimum thickness tmin/L,
while circles represent the maximum thickness tmax/L. Using
least-squares fit, we find that the maximum thickness increases
linearly with L, whereas the minimum thickness decreases with L.
In small pumpkins, thickness appears relatively uniform, as
shown by the similarity between minimum and maximum thick-
ness on the left-hand side of Fig. 7a. Large pumpkins exhibit a
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Fig. 5. The relation between time and weight for giant pumpkins grown by Andy Wolf in years 2002–2005.
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Fig. 6. Relation between time and three measures of circumference (horizontal circumference, side-to-side and front-to-back measurements). Pumpkins grown by Andy
Wolf in years 2002–2005.

1 Note that it would be computationally impossible for each cell in the fruit to
be represented by a separate node. For example, a mature apple has 40 million
cells, following over 20 doublings by cell division [28].
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greater variability in thickness, indicating that growth varies
spatially along the pumpkin. For the purpose of our modeling,
we approximate the growing pumpkin as having uniform thick-
ness t ¼ 0.14L, approximately the average thickness observed.

Fig. 7b plots the weight W of pumpkins as a function of their
diameter. The data is fit by the weight of a spherical shell with
uniform thickness, W ¼ p=6rgL3ð1$ð1$2t=LÞ3Þ where assuming a
constant ratio t/L leads approximately to the trends observed,
W ! L3, or specifically,

W ¼ aLb ð5Þ

whereW is in Newtons and L in meters, a ¼ 2070, b ¼ 3.0 (N ¼ 49,
R2 ¼ 0.97). We note that the discrepancy between the model and

data for larger pumpkins can be attributed to deformation of
the shell.

3.2. Breaking force

For sufficiently thin elastic shells (t5L), the breaking force F of
a spherical shell is well-known. The force scales according to
F ! sf t

2, where sf is the breaking stress of the shell; this result
that has been shown both theoretically [41] and by breaking
hundreds of eggshells [42]. According to our breaking experi-
ments (Fig. 8), we find pumpkins follow a different trend
presumably because they are thick-walled: using a least-squares
fit, the breaking force F ¼ atb where F is in Newtons, t in meters,
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elasticity E; and it grows under influence of gravity (acceleration g). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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a¼ 2:9( 105 N/m3/2 and b¼1.5 (N ¼ 7, R2 ¼0.96). Assuming
pumpkins have a uniform thickness of t ¼ 0.14L, we can estimate
their maximum size. This occurs at a diameter Lmax & 1:5(
103ðrgÞ$1:5 & 3:3 m and a corresponding pumpkin mass of
9000 kg. However, non-uniformities of the pumpkin shell, as we
observed, may lead to breaking at smaller sizes. For example,
pumpkin density r can increase suddenly during rainstorms, after
which pumpkin explosions have been documented [43]. Even if
mechanical failure does not occur due to material breakage at
these sizes, plastic deformations associated with pumpkin growth
will affect pumpkin development.

Fig. 8a shows a market pumpkin slowly crushed between two
plates. This process is analogous to a pumpkin increasing in
weight, and we use the experiment to estimate the maximum
weight of a pumpkin before it fractures from self-weight. This
experiment provides an important control test: this is the weight
pumpkins would grow if they were unable to plastically deform
and so reduce local stresses. Fig. 8c shows the relation between
pumpkin diameter and the maximum non-dimensionalized com-
pressive force that the pumpkin can support (F/W). The linear
fit is: F/W ¼ $0.65L + 52, with L in cm (R2 ¼ 0.47). Without the
assistance of growth-mediated plasticity, breakage (F/W ¼1)
should occur at a size Lmax ¼ 79 cm. To make a more reliable
estimate using this method, more data is required. We note that
this estimate is about half of the current world record value, L ¼
1.4 m. The discrepancy between these two values indicates the
importance of considering plastic deformation.

3.3. Observed plastic deformation

As shown by the time-lapse photographs in Fig. 9a and by the
circular symbols in Fig. 10, as the pumpkin increases in size from
L ¼ 3 to 140 cm (or its dimensionless weight rgL=E increases
from 0.0001 to 0.01), the aspect ratio of the pumpkins can
decrease as much as 50%. This was manifested visibly in Fig. 3,
in which small pumpkins (Lo50 cm) were generally spherical,
while large pumpkins (L41 m) appeared squashed. This flatten-
ing occurs primarily due to deformation at the base of the
pumpkin.

According to thin-shell theory [44,41,45], the region of great-
est tensile stress occurs on the bottom of the pumpkin, which
supports most of the pumpkin’s weight, W ! rgL2t. This force is
applied at a distance L/2 from the pumpkin’s center of mass, and
generating a torque t! ðL=2ÞrgL2t. The peak bending stress at the
edge of the shell is given by smax ¼ 2t=ðt2LÞ. The associated strain
is given by emax ¼ smax=E! ðL=tÞðrg=EÞL! 1210% which suggests
that the largest pumpkins will suffer plastic deformation at their
bases. To determine more precisely the effect of plastic deforma-
tion, we turn to our computational model.

Fig. 9. Time-lapse photographs of a growing giant pumpkin, courtesy of Ryan Foss [34].

pumpkin photographs
pumpkin time lapse
pumpkins, crushed

model, elastic pumpkin
model, plastic pumpkin (εg = 0.01)
model, plastic pumpkin (εg = 0.005)
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Fig. 10. The relation between pumpkin aspect ratio H/L and dimensionless
pumpkin weight rgL=E. Circular symbols represent deformations of growing
pumpkins (with blue circles provided by pumpkin photographs by volunteer
farmers and green circles provided by time-lapse images donated by [34]. Crosses
represent deformations of pumpkins squeezed in an Instron machine with a
dimensionless force rgL=E, as in Fig. 8. Error bars represent standard errors of
measurement. The curves represent pumpkin deformation models incorporating
elasticity E& 1 MPa (dashed curve) and plastic yield strain (dash-dot curve), and
growth yield strain (solid curve). Note that the elasto-plastic pumpkin deforms
five times as much as the elastic pumpkin, given the same gravitational load.
Insets show the approximate deformation of pumpkins using these three models.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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3.4. Computed pumpkin shapes

Using our computational model, we calculate pumpkin shapes
(Fig. 11) and heights (lines in Fig. 10). In the sequence of pumpkin
shapes, blue color denotes compression; red color denotes tension.
The dashed curves shows pumpkin height due to elasticity alone.
The dash-dot and solid curves shows the height due to elasto-
plastic behavior (defined in Eq. (2)) using the values of the growth
strain eg ¼ 0.01 and 0.005, respectively. In our numerical method,
forces were applied to virtual pumpkins that were initially nearly
spherical (H=L& 0:9, which is close to the shape of the pumpkins
we measured). The elastic deformation model (red line) is roughly
linear in the range of weights measured. However, we find that the
evolution of plastic deformation is non-linear. Specifically, the
shell exhibits rapid changes in height at W ¼ 0.0113 and 0.008 for
the growth strains eg ¼ 0:01 and eg ¼ 0:005, respectively. These
shape changes are associated with plasticity-induced buckling of
the shell. Because of the coarseness of our experimental data, it is
not clear whether such buckling occurs in nature.

Our elastic model provides a good estimation of forces applied
very quickly to a pumpkin, as shown by correspondence between
the cross symbols, representing instron crushing experiments,
and the dashed curve in Fig. 10. We conclude that forces applied
quickly to pumpkins causes them to respond elastically before
rupture. The elastic forces, however, are insufficient to generate
the substantial deformations observed in growing pumpkins. In
growing pumpkins (in the size range rgL=Eo0:01), aspect ratio
decreases by 40%, with only 10% due to elastic forces.

The incorporation of a plastic yield stress into our elastic model,
as in Eq. (2), allows us to predict pumpkin heights consistent with
those observed, as shown by the correspondence between the
circular symbols and the solid curve in Fig. 10. We find that pumpkin
shapes are best approximated using a yield strain eg ¼ 0:005, which
is about half of the plastic limit ey of plant cells [30]. Calculations of
stress in the pumpkin material shown in Fig. 11 reveal meridians of
high tensile stress (seen by the vertical red lines at rgL=E¼ 0:01),
which are consistent with the formation of vertical cracks in the ribs
of the pumpkin, as observed by farmers. We note that the elasto-
plastic model shows sensitivity to changes in the yield strain eg .
Specifically, when we reduce eg from 0.005 to 0.001, we observe
taller pumpkins and a much poorer correspondence to the heights
observed, as shown by the dash-dot line in Fig. 10.

3.5. Predicting maximum pumpkin size

What is the largest pumpkin that can be grown? This is a difficult
question for several reasons. First, as shown in Fig. 2, giant
pumpkins are the fastest growing of all fruits. This makes it difficult
to obtain growth limits using comparisons to other fruits. Second,
the growth process involves many biological factors that we do not
consider in our study, such as the role of genetics, growing
techniques and resources supplied. It is likely that these variables
will play a role in constraining growth. In this section, we highlight a
potential mechanical problem that may arise at large sizes.

Predicting fracture due to self-weight can be approached from the
perspective of force or time. In our present investigation, we have
shown that pumpkins can readily deform in response to sufficiently
large local stresses: the result of this response is the observed
flattened shape of pumpkins. It is noteworthy that only a 0.005 yield
strain can lead to reduction in pumpkin height of 40%.We now briefly
discuss the role of growth rates in limiting the size of pumpkins.

In our current modeling efforts, we make no reference to how
quickly pumpkins can plastically deform during growth. In dis-
cussions with growers, we find that pumpkins tend to form cracks
during the fastest part of the growing season (around day 50 in
Fig. 5) and during the fastest changes in water content (e.g.
rainstorms). Farmers have stated that pumpkins can grow in
weight by up to 15 kg per day. After harvesting, pumpkins lose
2 kg of water per day alone due to evaporation. The majority of
these weight gains and losses are due to water uptake.

The total growth rate of the pumpkin is due to cellular division
and expansion. It can be measured as the rate of increase in
relative distance between two painted spots on the pumpkin. We
approximate the total growth rate using two components: the
first due to uniform increase in size and the second due to plastic
deformation of the pumpkin:

_etotal ¼ _euniformþ _edef ð6Þ

We can estimate uniform growth rate, _euniform, using the grower’s
measurements for (c,d,f), given in Eq. (4) and Fig. 5. For modeling the
growth of larger pumpkins, we adjusted the value of c according to
the corresponding final pumpkin mass; we left the remaining
constants d and f as measured. The deformation growth rate, _edef
may be estimated using our simulations in combination with (4). We
examined all nodes in our computational pumpkin to find the point
of largest plastic deformation for a given pumpkin weight. We find
that the maximum plastic deformation in the pumpkin is given by

edef ¼ jekW ð7Þ

where j ¼ 0.0144, k ¼ 308 and W is the dimensionless weight.
The fit of this equation to our numerical solution is shown in Fig. 12a
(R2 ¼ 0.88). The question that arises then is: can the pumpkin’s cells

Fig. 11. Simulations of pumpkin growth for (a) an elastic pumpkin (with no
plastic deformation) and (b) a elasto-plastic pumpkin (with plastic yield of 0.005).
Color indicates the sign of the strain: green (zero strain), blue (tensile strain), red
(compressive strain). Note that the elasto-plastic pumpkin deforms five times as
much as the elastic pumpkin, given the same gravitational load. (For interpreta-
tion of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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grow (divide and expand) sufficiently quickly to accommodate the
pumpkin deformation?

Fig. 12b–c shows the maximum growth per day across the
growth season for two pumpkins of final weights 380 and 900 kg,
respectively. For moderately sized giant pumpkins (M ¼ 380 kg,
Fig. 12b), the uniform growth rate (with a maximum value of
0.035 day$1) is much larger than the deformation growth rate
(with a maximum value of 0.01 day$1). At day 50, the pumpkin has a
uniform growth of 0.02 day $1 and thus, an increase in weight of
1:023 & 6%& 9 kg day $1, as is consistent with farmer’s observa-
tions. During this peak in mass added per day, the deformation
growth is also at its largest (at 0.01 day $1). Certain parts of the
pumpkin are thus forced to grow at a combined rate of nearly
0.035 day$1 during the peak of the growth season. For pumpkins of
moderate size, the deformation does not significantly affect the total
growth rate.

For heavier pumpkins such as the 900-kg pumpkin (the world
record for 2010) shown in Fig. 12c, the total growth rate can reach
values of 0.05 day$1. The maximum growth rate is obtained at
day 50, where the deformation growth rate has in fact exceeded
the uniform growth rate. This high value may be limiting to plant
tissue. Roots are known to exhibit strains up to 0.5 h$1 in maize
root [46], but fruit cells are unlikely to grow so quickly. Thus, at
large weights during the peak of the growth season, pumpkins
may be unable to grow to reduce local stresses and may be prone
to fracture instead.

4. Conclusions

In this combined experimental and theoretical study, we inves-
tigated the shape evolution of giant fruits. We collected pumpkin
growth data from fifty volunteer farmers and compared this data to
the predictions of our computational model. Using Instron materials
assays, we measured the fracture force of normal-sized pumpkins,
which enabled us to make estimates of their maximum size before
fracture under self-weight. In our computational model, we pre-
dicted the deformed shapes of giant pumpkins using a single free
parameter, the growth strain eg , which we found to be 0.005. It is
noteworthy that the growth strain is less than the yield strain of
pumpkin tissue (egoey), as expected, indicating that pumpkins will
tend to avoid crack formation via increased rates of localized cell
division.

Giant pumpkin shapes are more diverse than we are able to
account for with our current model. First, our model only predicts
convex pumpkin shapes. However, large pumpkins sometimes
exhibit a curvature reversal at their base. This phenomenon is
likely related to the high tensile stresses we computed at the base
of the pumpkin (red regions in Fig. 11). Farmers have circum-
vented such pumpkin deformities by growing them on slippery
vinyl to decrease the coefficient of friction of the pumpkin.
Second, our model assumes that pumpkin thickness is uniform,
as in market pumpkins. However, large pumpkins appear to
exhibit a distribution of thicknesses throughout the shell, as
shown in Fig. 7. This variability in growth might be caused by
the presence of the flowering and stem ends of the fruit which
may create an asymmetric transmission and distribution of water
and nutrients. Third, our model assumes homogeneous material
properties, but the pumpkin skin is clearly more stiff than the
interior flesh. A gradient model or multilayer model may work
better, which can take into account inhomogeneities in elastic
moduli and yield stress. We hope that models of further complex-
ity can predict these and other interesting growth phenomena
that we were unable to explain here.

The limits of our study highlight the many open questions
remaining in the study of giant plant growth. The growth of
plants to extreme sizes, while requiring specialized farming
methods, can help to answer biological questions that are impos-
sible to address using normal-sized plants. We hope that the
Atlantic giant pumpkin will continue to serve future workers,
as it did the authors, as both a model organism and a source of
wonder.
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