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Abstract
The Mexican jumping bean, Laspeyresia saltitans, consists of a hollow seed housing a moth
larva. Heating by the sun induces movements by the larva which appear as rolls, jumps and
flips by the bean. In this combined experimental, numerical and robotic study, we investigate
this unique means of rolling locomotion. Time-lapse videography is used to record bean
trajectories across a series of terrain types, including one-dimensional channels and planar
surfaces of varying inclination. We find that the shell encumbers the larva’s locomotion,
decreasing its speed on flat surfaces by threefold. We also observe that the two-dimensional
search algorithm of the bean resembles the run-and-tumble search of bacteria. We test this
search algorithm using both an agent-based simulation and a wheeled Scribbler robot. The
algorithm succeeds in propelling the robot away from regions of high temperature and may
have application in biomimetic micro-scale navigation systems.

S Online supplementary data available from stacks.iop.org/BB/7/036014/mmedia

(Some figures may appear in colour only in the online journal)

1. Introduction

Mobile rolling robots are a unique design for locomotion and
have long attracted the attention of roboticists (Wang and
Halme 1996, Bhattacharya and Agrawal 2002, Sugiyama et al
2006, Alves and Dias 2003). This design has two main benefits:
(1) a hard spherical shell protects the robot’s components from
hostile environments and (2) a round shape enables the robot to
utilize rolling locomotion, which is highly efficient on smooth
surfaces. A review of recent progress toward building and
controlling spherical and cylindrical rolling robots is given by
Armour and Vincent (2006). The motivation of the current
work is to contribute to robotics through investigation of a
related type of locomotion found in biology. We here use
the Mexican jumping bean as a model organism for rolling
locomotion within an armored shell.

The Mexican jumping bean (figures 1(a) and (a′)) consists
of a brown seed capsule animated by a parasitic moth larva.
In popular culture, the beans are used as children’s toys and in
games of chance because of their seemingly random motion.
The underlying hypothesis of this study is that although the
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hard shell protects the larva from the elements, it impedes
navigation, locomotion and sensation of its environment.

Mexican jumping beans originate from the northwestern
mountains of Mexico, including the Sonoran desert. Their life
cycle consists of several stages (Heckrotte 1983), beginning
with the moth Laspeyresia saltitans laying its eggs in the
flowers of the fern Sebastiania pavoniana in early summer.
The flowers mature into pie-shaped seed pods, which in turn
split apart to entrap moth larvae in carpals resembling slices
of a pie (figure 1(a′′)). The seed pods, or ‘beans’, drop from
the fern following mid-summer rains, after which they must
quickly seek out shadows and crevices in which to hide from
the Mexican sun. Temperatures where the beans are found have
a wide range in the summer months, ranging from 0 ◦C at night
to up to 56 ◦C in the shade. To escape the highest temperatures,
the bean continues to seek shelter for six to eight months, but
with decreasing vigor as the larva matures. The larva’s last act
before pupation is to cut a round trapdoor in the seed, which
it uses to exit the seed after transforming into an adult moth.

In our investigation, we will discuss the motion of the larva
in either of two states: (1) enclosed within its bean shell, a state
that we refer to it as the bean or (2) outside its bean shell, a
state that we refer to as the larva. The means by which the larva
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Figure 1. The mexican jumping bean. (a) Orientation of the bean
with round side down, and (a′) flat side down. (a′ ′) Three beans
forming a complete seed pod. (b) The bean, cut in cross-section
showing the larva and the web it has built inside the seed pod.

controls its encasing seed pod was first elucidated by Herter
(1955). By placing the larva inside a transparent pill capsule,
Herter found that the larva attaches itself to the capsule with
silk threads. The motion of the bean is actuated by rocking
the threads in one of two ways. If the larva walks around
the inside surface of the capsule, rolling occurs. Jumping is
made possible by the larva grabbing the shell with its posterior
prolegs and rapidly striking the capsule with its other end.
In section 4, we report the probability distribution of each of
these movements.

Quantitative experiments of the bean’s response to
temperature were conducted by Heckrotte (1983). The author
showed that jumping beans have an internal timer that
modulates the frequency and duration of their movements,
subject to temperature. For example, at 30 ◦ C, the beans
will exhibit a period of high activity, jumping 30 times per
minute for a duration of 15 min. Afterward, the bean enters
a period of hibernation lasting up to 24 h. Heckrotte found
that the frequency of movements increased with increasing
temperature, peaking at 40 movements per minute at 45 ◦ C.

In this study, we report the results of a combined
experimental, numerical and robotic investigation of jumping
bean locomotion. We begin in section 2 with a discussion of
preliminary theoretical considerations, namely the limits of
motion for spherical robots as found by previous investigators.
In section 3, we present the experimental, numerical and
robotic methods used in this study. In section 4, we present
our experimental results of our survey of bean locomotion,
including the trajectories of beans in channels and along
inclines. In section 5, we present our robotic and numerical

results, demonstrating that we have captured the essence of the
bean sensing and motion both in a simple robot and in silico. In
section 6, we discuss the implications of our work and suggest
directions for future research.

2. Preliminary theoretical considerations

We first consider a few simple mechanical principles that
constrain the jumping bean’s motion. The propulsion of the
bean is similar to that of spherical robots in that locomotion is
generated by the motion of an imbedded mass or driver (Wang
and Halme 1996). For the beans, the larva walking inside the
shell causes it to tip over and roll.

The larva is 1 cm long and has a characteristic mass of
m = 0.05 g (where the number of insects measured is N = 12).
Without the larva, the shell has mass Mshell = 0.05 g nearly
equal to that of the larva. Approximating the shell as spherical,
it has a characteristic radius R ≈ 0.5 cm and thickness b =
0.1 cm. When the larva walks up the inner surface of the shell,
its weight applies a torque around the shell’s point of contact
with the ground. This torque causes the spherical shell to roll.
The angular acceleration α of the shell with larva is

α = 3
2

m
Mshell

gsin θ

R
, (1)

where θ is the angle shown in the inset of figure 2(a) and g is
the gravity. Since the acceleration of the shell is proportional
to the ratio of mass of larva to shell, the larva should employ a
lightweight shell to roll quickly. The characteristic timescale
for the rolling is thus given by #t ∼

√
MshellR

mg ≈ 0.023 s, which
is small compared to the time it takes for the larva to walk up
the shell (on the order of 0.5 s). By rolling inside its shell, the
larva can travel at burst speeds of 2.0 cm s−1, which is four
times higher than its peak walking speed (0.5 cm s−1).

The largest incline angle γ that a spherical shell can climb
was first derived by Wang and Halme (1996) and is given by

γmax = sin−1
(

r/R − κ

R
− κMshell

mR

)
, (2)

where r is the radial position of the larva’s center of mass and
κ ≈ 0.15 cm is the coefficient of rolling friction (for wood
on wood (Avallone et al 2007)). The width W of the larva is
0.3 cm; yielding an r = R −W/2 = 0.35. Using the remaining
values for the jumping bean geometry and mass, we predict that
the maximum incline angle for a spherical bean is γmax = 5◦.
In reality, this value is highly dependent on the shape of the
bean, as we shall see in our results.

The largest obstacle the shell can climb is given by (Wang
and Halme 1996)

hmax = R −

√

R2 −
(

mR − κ(m + Mshell)

Mshell + m

)2

. (3)

Using our measurements of shell mass and radius, we find that
a spherical bean could traverse obstacles hmax = 0.02 mm in
height. In reality, the asymmetric shape of the shell allows it
to cross obstacles that are nearly 1 cm in height.

One drawback of containment within a shell is the longer
time required by the larva to sense its ambient temperature.
This time lag negatively affects navigation because the larva
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Figure 2. (a) Schematic of the jumping bean atop a heated surface. (b) Experimental setup for observing bean motion on planar surfaces.
(c) Experimental setup for observing bean motion in 1D channels. The apparatus made from metal tray and foam board can be used to
observe 12 beans or larvae simultaneously (see inset). The apparatus can be tilted at an angle φ with respect to the horizontal to observe the
motion of the bean up inclines.

bases its direction of movement on sensation of its surrounding
temperature. The time constant for sensing a temperature T can
be approximated using Fourier’s law (Incropera et al 2007)
(figure 2(a)),

ρV c
dT
dt

= −kA∇T, (4)

where ρ and c denote the density and specific heat of the shell
material, V is the volume of the bean, A is the area in contact
and k is the conduction coefficient. Non-dimensionalizing this
equation with a timescale τ and length scale b, given by the
thickness of the shell, we find that the timescale of heat is
τsense = bρV c

kA . Using the appropriate values of c (4000 and
1000 J (kgK)−1) and k (0.12 and 0.6 W (mK)−1) for wood
and water, respectively (Incropera et al 2007), we find that
the shell requires 1 s to heat up and the larva 10−1 s. Thus,
according to these estimates, the larva can sense surroundings

temperature ten times faster outside of the shell than from
inside.

A greater sensitivity clearly allows the larva to react to
its environment more quickly than the bean. However, there
may be potential sensing benefits for the bean’s shell in
certain environments. For instance, the higher heat capacity
of the bean shell acts both as an integrator and as a low-
pass filter for temperature. This might enable it to disregard
misleading changes to the radiation, convection or conduction
of its surroundings, such as by a breeze or a passing shadow.

3. Methods

We studied the movements of jumping beans using a
combination of experimental, numerical and robotic methods,
which we present here. We begin with a description of methods
for bean care and motion recording.
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Figure 3. High-speed film sequences of the jumping beans movements, including rolls, jumps and flips. The frequency of maneuvers is
shown.

3.1. Jumping beans

3.1.1. Bean care and observations. Mexican jumping
beans were procured from the professional breeder
MyPetBeans.com. Beans were kept dormant by refrigeration
at 5 ◦C, which is below their minimum active temperature of
10 ◦C. Keeping the beans dormant during non-testing extended
the lifetime of the larvae for up to two months. Larvae were
removed from the shell with a pen knife and once outside the
seed they were used for up to one day of experiments. Keeping
the larvae outside of the shell for longer durations significantly
decreased both their movement and their life expectancy (to
2–3 days). Bean movements (figure 3) were categorized using
observations of ten beans at a uniform room temperature for a
10 min period on a planar cardboard surface. Video recordings
were made using a Sony HD HandyCam and a high-speed
Phantom V10 camera.

3.1.2. Two-dimensional (2D) tests. Qualitative testing was
performed using five beans atop a planar surface with a radial
temperature gradient. A white cardboard sheet (0.6 m ×
0.6 m) was illuminated by a desk lamp (25 W halogen) as
shown in figure 2(b). A temperature gradient of 0.54 ◦C cm−1

was recorded using a handheld infrared thermometer (Kintrex
IRT0421 non-contact infrared thermometer with an accuracy
of 1 ◦C for the temperature range tested). Beans were initially
placed flat side down underneath the spotlight. The subsequent
10 min of motion were filmed and digitized using MATLAB.
Following filming of the bean, the larva was removed from the
shell and subjected to the same procedures.

3.1.3. One-dimensional (1D) tests. Quantitative testing was
performed using 12 beans tested on a 12 lane desktop
racetrack as shown in figure 2(c) and in the supplementary
movie, available from stacks.iop.org/BB/7/036014/mmedia.
The apparatus consisted of a metal baking pan, whose bottom
was lined with paper and lanes divided by foam-board walls.
Heat was applied to one end of the track using an electric
heating blanket under the pan. The apparatus provided each
lane with near-identical start temperatures. We tested three
temperature gradients (low, medium and high) corresponding

to maximum temperatures of 34, 37 and 40 ◦C and average
temperature gradients of 0.59, 0.79 and 0.99 ◦C cm−1. The
highest temperature gradient had a parabolic distribution
(T = 0.06x2 − 2.0x + 41, where x is in cm and T in ◦C),
as verified with infrared thermometer. Bean tests were
performed for 5 min in duration at all three temperature
settings. Twelve beans were raced along the racetrack for six
trials; then the shells were cut open and the larvae were each
run for six trials. Beans were placed with a starting orientation
of flat side down; larva were placed leg-side down and facing
the finish line of the track. Tests were also run to measure the
bean’s ability to move up an incline (with angles between 0◦

and 15◦ and increments of 2.5◦).

3.2. Robot and simulation

We wrote an algorithm of jumping bean behavior as a means
for (1) implementing our findings on thermotaxis robotically
and in silico, (2) testing hypotheses about the overarching
rules governing bean behavior and (3) exploring emergent bean
behavior in complex environments where similar experimental
studies become too labor intensive to plan and execute. The
algorithm may be of further utility in the future as a means
for exploring the effectiveness of biomimetic concepts which
base their behavior on jumping bean thermotaxis.

The robot code was written in Python. The
agent-based algorithm was written using the NetLogo
simulation software and a copy of the code is
available in the supplementary information, available from
stacks.iop.org/BB/7/036014/mmedia. The application to run
the software is available free online.

3.2.1. Robot. The jumping bean search algorithm was tested
using the robot shown in figure 8(a). We modified a wheeled
Scribbler robot developed by Parallax, Inc. to sense light, turn
and move forwards. The robot consisted of three light sensors
and two independent DC motors (to drive the wheels). The
robot’s pen port facilitated tracking the robot’s trajectory.

The robot was programmed such that it moved toward
lower light intensity values. The robot had two phases of
motion. In the ‘tumble’ phase, the robot rotated 360◦ while
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sensing light intensity values from its photo sensors on board
and storing the data values at each 45◦ turn, resulting in eight
measurements per tumble. The robot calculated the minimum
light value among these eight readings and turned toward the
lowest light intensity direction. Consistent with the optimal
results found in our computational model, we programmed
the robot to perform its tumble toward clockwise and counter-
clockwise with equal probability. In the ‘run’ phase, the robot
moves a preset distance toward the direction with the lowest
light intensity value. For our testing, we assumed that higher
light intensities equated to a higher temperature.

An important design consideration in building the robot
was repositioning its light sensors. The position of the IPRE
fluke board was changed in order to align the photo sensors
to face the top (light source). Without this modification, the
robot’s own shadow would interfere with its light sensing
ability.

The robot walk algorithm was run and tested under a radial
light gradient created by a halogen lamp mounted vertically
above the floor of a darkened room. Our light source was a
fluorescent desk lamp with a GE 13 W bulb held at a distance
to the ground of 40 cm. Our light sensors detected light 7.5 cm
above the ground. Robots placed in this radial gradient were
easily capable of finding their way toward the darkest parts of
the room. A trace of the robot’s motion was recorded on paper
using the pen port of the robot and is shown in figures 8(b)
and (c).

3.2.2. Simulation. The computational model was developed
using the NetLogo agent-based simulation software (Wilensky
1999). Agent-based models (ABMs) are particularly attractive
for capturing the collective, emergent, behavior of individuals
operating in a complex and stochastic environment. Prevalent
examples include the simulation of markets or economies,
traffic congestion, warfare, population dynamics and disease
spread. In each of these scenarios, the simulation embodies
a collection of mobile, autonomous agents operating on a
uniformly gridded, or celled, landscape. This can be viewed
as cellular automata (Wolfram 2005) with the inclusion of
mobile agents, where both the cells and the agents store a set
of states. The autonomous agents make decisions about their
next position based on a set of rules which account for the
agent’s state, its neighboring agents’ states and the states of
the cellular landscape in close proximity to the agent. Time
therefore flows in an explicitly stepped manner in which each
agent evaluates its next move before the simulation proceeds
to the next time step. Along with updates of agent positions,
there are updates to the agents’ state variables during each
step. An in-depth review of agent-based modeling is given by
Bonabeau (2002).

The ABM modeling paradigm works well in studying
jumping bean thermotaxis on a plane. The landscape can be
easily programmed to hold a temperature distribution, and the
agents can be used to represent the jumping bean larvae with
or without the bean shell. The only state held by either a cell
or an agent (i.e. bean) is its temperature. The agents also store
a non-state variable specifying their desired temperature (i.e.
the temperature they would like to achieve, above which they

Table 1. Duration and distance traveled for each bean motion.
Averages and standard deviations are measured for three beans.

Roll Jump Flip

Duration (s) 0.2 ± 0.03 0.04 ± 0.02 0.4 ± 0.2
Distance (cm) 0.5 ± 0.1 1 ± 0.4 3 ± 1

seek cooler surroundings). Simple rules can then be specified
which determine the temperature update of the beans at the
next time step, and which determine their next position.

4. Experimental results

4.1. Bean movement types: roll, jump and flip

Using high-speed video, we categorized the movements
of the bean (see supplementary video, available from
stacks.iop.org/BB/7/036014/mmedia, and figure 3). The
geometry of the bean is visibly asymmetric (figure 1), which
governs the range of movements that are possible. The bean
can stably remain at rest upon either of its two flat faces or upon
the apices of its two hemispherical surfaces. After observing
many bean motions, we categorized the possible motions into
three distinct actions: roll, jump and flip. In the first type
of movement, the bean simply changes orientation by rolling
across one of its ridges. In the second type of movement, called
the ‘jump’, the bean is airborne for a brief period as it hops, but
lands upon the same face from which it jumped. In the last type
of movement, the ‘flip’, the bean performs a vigorous leap to
land on a different one of its faces. The duration and distance
traveled for each type are shown in table 1. Flips travel the
greatest distance followed by jumps and then rolls.

The energy used by the larva to jump and flip can
be estimated by the maximum gravitational energy E =
(m+Mshell)gh achieved, where h is the change in height of the
center of mass. Since the height of the jump is 0.1 cm, while the
height of the flip is 0.75 cm, we conclude that the flip requires
75 times more energy than the jump. Our measurements of the
frequency of these movements match well with these energetic
costs. Figure 3 shows the frequency distribution of rolls, jump
and flips for a total number of 550 movements by ten beans.
Consistent with the relative energies associated with each
motion, the bean jumps 85% and flips 1% of the time. The
remaining 14% of the time were rolls in which the bean would
simply pivot along its ridge.

A simple drop test was performed to determine if the
bean’s geometry or mass distribution gave it an affinity for the
flat or round side. The beans were dropped from a height
of 10 cm. Over 120 trials, the bean landed with nearly
equal probability on the flat and round sides (62 versus 58),
indicating there is no bias in landing probability.

4.2. Run-and-tumble trajectories

To visualize the paths made by the beans to escape heat, we
filmed the trajectories of the beans on flat surfaces and in 1D
racetracks. For the former, figure 4 shows the planar paths of
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Figure 4. (a) The 2D trajectories of bean and larva exposed to a
radial temperature gradient. (b) The time course of the radial
distance traveled from the start position.

the bean and larva for a duration of 10 min. Figure 4(b) shows
the time course of the radial distance r traveled from the start
position. The periodic tumbling of the bean and larva occurs
at 30 s intervals. Both bean and larva manage to move away
from the heat source, but the larva travels three times faster,
as shown by the longer distance traveled. Both trajectories
are characterized by a series of runs and loops, analogous to
the run and tumble of bacteria (Berg 1993) or the circular
trajectories of humans when lost (Souman et al 2009). In this
case, a ‘tumble’ is actuated by the larva walking in a circle of
0.5 cm diameter. In reality, the larva travels in smooth loops
which can be either left or right handed. We will explore how
these tumble types affect the efficacy of thermotaxis in our
numerics in the next section.

Our 1D tests further confirm that beans exhibits a run-
and-tumble trajectory. Figure 5(a) shows the time course of the
position of three beans under a temperature gradient of 1.36 ◦C
cm−1. The beans’ motion can be divided into three stages. In
the first stage, lasting 1–1.5 min, the bean holds its position:
specifically, the bean remains within 2 cm of the origin despite

rapid oscillations every few seconds. In the second stage, the
bean progresses forward into cooler regions at a high speed
(up to 20 bean lengths per minute). This stage is interrupted
every 30 s, when the bean appears to be checking its bearings
(by oscillating back and forth). The final stage is characterized
by a plateau in movement at the preferred temperature of the
bean, shown by their fixed position on the racetrack. Beans
generally arrive at this preferred temperature within 2 min of
the start of the test.

Based on the presence of a plateau stage, we conclude
that variation in bean speed (averaged over 10 min) arises
from variation in their preferred temperatures. Thus, although
jumping beans are used in games of chance, their individual
motions are largely deterministic. Randomness in jumping
bean games occurs in two places: in the bean’s tumbling (left
or right) and in the player’s random selection of which bean to
use. Each bean has its own preferred temperature.

Figure 5(b) shows the relation between temperature
gradient (◦C cm−1) and the average dimensionless speed
traveled by the bean over 10 min. As expected, the beans
move faster at the highest temperature gradients tested
(dT/dx 1◦C cm−1). The large error bars are consistent with
the large variability in bean preferred temperature.

The bean’s asymmetrical shape allows for improved
climbing ability compared with respect to a spherical shape.
The heat source and the beans were placed upon inclines of
γ = 0–15◦ at 2.5◦ increments. Figure 6 shows the relation
between climbing speed and incline angle. As expected,
the beans decreased speed with increasing incline angle, in
accordance with the greater energy required to climb up
steeper slopes. The maximum incline angle climbed was
γmax ≈ 9–15 ◦. This angle is larger than the angle calculated in
section 2 for a spherical bean with the same mass and size as
the jumping bean. We attribute this improved climbing ability
to the flat sides of the bean, which prevent undesired rolling
and allow the bean to act as a rachet.

5. Robot and simulation results

To further study the run-and-tumble trajectory performed by
the beans, we idealize this algorithm and test its efficacy
in both a robot and simulation. The algorithm, given in
symbolic flow chart format in figure 7, allows for comparison
of candidate rule sets in capturing emergent bean behavior.
Once a representative rule set has been determined, we can
explore bean behavior in more complex environments.

Input parameters for the simulation allow multiple beans
to be simulated (num-beans) and specification of the initial
bean temperature to start the simulation (initial-bean-temp
T (0) = 65), the temperature at which each bean stops moving
(happy-bean-temp = 17), a lumped heat transfer coefficient
(h̄ = 0.1), the number of run steps the bean takes before
performing a tumbling/turning maneuver (run-steps-before-
tumble = 20), and the accuracy with which the beans can
sense the landscape temperature (sensing-accuracy S). The
lumped heat transfer coefficient arises from a discrete version
of equation (4) given by

T (k + 1) = T (k) − h̄ (T (k) − Tcell) , (5)
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(a)

(b)

Figure 5. Bean tracking for a 1D channel. (a) The time course of the distance traveled for three typical beans (red, green and blue) under the
temperature gradient 0.54 ◦C cm−1. (b) The relation between temperature gradient and speed of the bean.

where T (k) denotes the bean’s temperature at time step k
and Tcell denotes the temperature of the cell occupied by the
bean at time step f . Comparison of equation (5) to (4) yields
an expression for heat transfer-coeff h̄ = kA

ρV c#t, where #t
denotes the simulation time step.

A sensing-accuracy parameter S acts to modify the cell
temperature measured by a bean as follows:

Tsensed = Tcell + 0.5 − R[1.0]
0.5

(
1.0 − S

100.0

)
Tcell, (6)

where R[1.0] denotes the result of generating a uniform
random number between 0 and 1.0, Tsensed is the temperature
sensed and registered by the bean. This is one choice for
introducing sensing error which we will denote as proportional
sensing accuracy; another easily implemented choice could
include a non-proportional sensing accuracy whereby the bean
is assumed to have a fixed temperature sensing variance
independent of the temperature it is trying to sense. In
the computational model, the bean uses sensed-temp during
tumbling manuevers to ultimately determine the next best

direction to head toward. In our robot, we assume a sensing
accuracy of 1.

A radial temperature distribution is assumed for the
landscape (shown to the right of the parameter input) with
a specified center temperature (center-temp = 65) and a
radial temperature gradient (dT/dr = temp-gradient = −0.5)
that is generally negative. This gradient acts to change the
temperature in the radial direction by the specified quantity
over one cell length. We used this landscape because for this
case, it is clear that optimal behaviors of the bean are purely
radial motions from the origin. Here we define an optimal
trajectory as the one that results in the absolute minimum
number of bean movements necessary for the bean to achieve
its desired temperature.

The testing landscape consists of a grid of 250 ×
250 cells. In our code, depressing of the setup action populates
the landscape with beans and establishes the temperature
distribution, while depressing the go button starts and stops the
simulation. The beans are all assumed to start at the center of
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Figure 6. (a) Time-lapse video of a bean moving up an inclined
plane is shown. (b) The relation between incline angle φ and speed
of the bean (cm s−1). Error bars represent the standard deviation of
measurement (N = 12).

the landscape with a desired temperature less than the center
temperature. Their initial orientation is randomly generated
such that they move out from the center of the landscape in
random directions, taking run-steps-before-tumble number of
steps before performing a tumbling manuever.

The beans step (or move) to an adjacent cell at every
time step. During the tumbling maneuver, the beans take a
step to the cell directly in front of them, followed by a 15◦

change in their orientation, followed by another step, etc.
During each step, they record a sensed temperature, which
differs from the actual cell temperature as described above
(equation 6). In doing so they complete a circular loop. The
lowest of the sensed temperatures then dictates the direction
they head next for run-steps-before-tumble number of steps
before performing another tumbling maneuver. With each step
their stored temperature either increases or decreases based on
equation (5).

5.1. Random tumbling generates optimal trajectories

A discussion on the rule set used by the bean during tumbling
completes the model description. Several sets were tested
before arriving at two final candidates that produce simulation
results with emergent behavior similar to that observed in
figure 4(b). These two include a set whereby the tumbling
is always performed by changing heading to the right side of
the bean, and a set whereby the bean first randomly selects
if the tumbling will be right or left turning. Note that once
decided, the entire tumbling event occurs using the decided
direction.

Typical results from both sets appear in figures 8(b) and
(c) for the robot and figures 8(e) and ( f ) for the numerics.
Figure 8(d) shows a third comparison result in which the
beans execute random walks. Each of the subfigures was

Figure 7. Symbolic flow chart of the jumping bean search algorithm.
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(a) (d )

(b)

(c )

(e)

(f )

Figure 8. (a) Wheeled Scribbler robot modified to test the jumping bean search algorithm. The repositioned light sensor to reduce the
influence of the robot’s shadows. (b–f) Trajectories of the robot (black) and simulation (red) in a radial linear gradient of light. (b, e)
Right-turning tumbles only show emergent behavior such as spirals. These spiral trajectories are non-optimal. (c, f) Here, random decisions
are made about left- and right-turning tumbles, showing generally radial trajectories which are optimal in this setting. (d) A random walk
approach is clearly poor for exiting a radial linear gradient in temperature.

generated using runs of the robot or numerical ‘bean’ sensing
with 100% accuracy. Trials were run until the beans came to
rest with a temperature state below their desired temperature.
For the robot, trajectories are colored black. In the simulation,
trajectory steps associated with running are colored red, while
tumbling steps are colored blue.

The first rule set, assuming only right-handed turns, results
in interesting emergent behavior (see figures 9(b) and (e)):
on the radially graded temperature surface, the robot and
simulated beans both take spiral-like trajectories that exhibit
a high degree of smoothness. These spiral trajectories are
relatively inefficient since they do not result in the optimal,
radial trajectory. The spiral bias is due to right-handed turns
not providing the bean the ability to sense temperatures to the
left of their trajectory. As a result, beans are unable to move
in the optimal radial paths. The resulting inefficiency offers

one explanation for why the beans in the experiment (figure 4)
are observed to tumble both to the left and to the right: this is
ultimately more efficient thermotaxis.

A rule set whereby the tumbling direction is random is
given in figures 9(c) and ( f ). The trajectories are generally
less smooth than the right-turning results, as shown by the
jagged patterns. However, they more closely follow an optimal,
radial trajectory. The observed switchbacks in the subfigure are
consistent with those observed by the larva in figure 4.

One qualitative difference worth pointing out exists
between the simulation and the experiments. Modeled
tumbling trajectories exhibit strict circular patterns, while the
experiments exhibit tumbling trajectories with more of a loop-
like character. Both tumbling trajectories result in the bias
discussed above however, and so the qualitative difference

9
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Figure 9. Simulation results showing the trajectories of 1000 beans
with (a) perfect sensing (S = 100) and (b) zero-accuracy sensing
(S = 0). (c) The average time to reach the bean’s desired
temperature as a function of sensing accuracy. 20 000 simulation
runs were performed for each data point. For comparison, a random
walk approach requires an average of 9600 time steps.

(circles vice loops) should have relatively little effect on
modeled thermotaxis.

Finally, it is worth comparing the bean thermotaxis to
a random walk, for which a simulation of a single bean is
depicted in figure 8(d). Here, step size is a single grid spacing.
It is clear from the comparison that the bean thermotaxis
approach is far more efficient and near optimal for exiting a
radial thermal gradient than randomly walking. The random-
walk approach would be better for finding isolated shadows
within the landscape, such as those generated by the shade of
a tree’s leaves.

5.2. Sensing accuracy

The model allows us to explore behavior or issues apart from
bean thermotaxis that might be important in a bio-inspired
application. One issue is the requisite sensing accuracy
necessary to achieve effective thermotaxis. The effect of the
sensing accuracy is explored in figure 9. The two extremes
of sensing accuracy are first explored in figure 9 using
1000 beans: perfect and zero accuracy. Zero-accuracy sensing
implies that the sensed temperature has a variance equal to the
actual temperature: as a result, beans are effectively random
walkers with a step size given by the run stage. The perfect
sensing results in very little tracing back of the beans to
the center of the domain, as evidenced by the coherent blue
circular rings in figure 9(a). Recall that these blue rings result
from tumbling, while red results from running. When a bean
runs over a tumbling trajectory, it replaces the blue with a red
cell (and vice versa). Patterns emerge in which the first two
tumbling zones, and the third to some extent, survive as the
beans head near-radially outward. Beyond that, the tumbling
trajectories appear random. In contrast, the zero-accuracy
trajectories in figure 9(b) appear random-like throughout the
domain, without tumbling coherence, and with a distribution
radius equal to that in figure 9(a).

The average time to reach a bean’s desired temperature
(one measure of effectiveness), as a function of sensing
accuracy, is explored in figure 9(c). Simulations at each
sensing accuracy were run using 20 000 beans. The average
number of time steps necessary for the beans to achieve their
desired temperature was then recorded for sensing accuracies
ranging from 0% to 100%. The plotted curve shows a weak
hyperbolic character that could be closely approximated by a
linear fit. As expected, the least amount of time (278 steps) to
achieve the desired temperature occurs with 100% sensing
accuracy. However, a run-tumble approach with even 0%
sensing accuracy leads to acceptable performance (in this
example 1248 steps—roughly 4.5 times longer than perfecting
sensing). This can be compared to a random walk, which yields
an average of 9600 steps, or 34.5 times longer than perfect
sensing.

6. Discussion and conclusion

We investigated the navigation and locomotion of the Mexican
jumping bean experimentally, robotically and in silico. In our
live bean experiments, we classified bean movements into three

10
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types (rolls, jumps and flips) and measured the likelihood of
each. We showed that flips were nearly 100 times less likely
than rolls and jumps, and that this difference was consistent
with the energy expenditure by the bean. In 2D tests comparing
larva in and outside of its shell, we found that the seed casing
impedes the larva’s thermal sensing and locomotion, as shown
by its increased speed when traveling outside its shell. We also
raced the beans along a 1D track with a fixed heat source at
one end. Using time-lapse photography, we recorded the bean’s
position along the track, finding that the beans increased body
speed with increasing temperature gradients.

An important result from our study was that both
bean and larva exhibit a run-and-tumble trajectory similar
to bacteria (Berg 1993, Codling et al 2008). This run-
and-tumble motion is also employed by a variety of other
organisms. For instance, fruit fly motion is composed of
straight-line movements punctuated by saccades in which
they switch direction (Tammero and Dickinson 2002). In
particular choosing straight-line distances according to Lévy
flights is optimal for locating targets that are distributed
randomly and sparsely (Reynolds and Frye 2007). As stated
by Reynolds, ‘A Lévy search strategy minimizes the mean
distance traveled and presumably the mean energy expended
before encountering a target. The strategy is optimal if
the searcher is exclusively engaged in searching, has no
prior knowledge of target locations and if the mean spacing
between successive targets greatly exceeds the searcher’s
perceptual range.’ An interesting open question is whether
jumping bean movement probabilities also correspond to Lévy
flights.

The locomotion of the Mexican jumping bean relies on
rolling, which is rare in the natural world. Few animals rely on
wheels rather than appendages (LaBarbera 1983), and fewer
still do so from within an opaque shell. A few counterexamples
exist, such as passive rollers that use wind and gravity to roll:
these include the tumbleweed, rolling salamander and rolling
spider (Armour and Vincent 2006, Full et al 1993). Active
rollers can choose their direction of travel by inputting energy
and steering: examples include the mother-of-pearl caterpillar
and the stomatopod shrimp. A recent example of active rolling
performed by a bio-inspired caterpillar robot is found in
Lin et al (2011). Jumping beans, as we found in this study,
along with jumping galls may also be considered to be active
rollers.

We observed that the notch in the bean’s shell increases
its ability to ascend inclines and obstacles with respect to
a spherical shell. This asymmetry increases the bean’s cost
of locomotion on flat terrain. Nevertheless, the asymmetry
might benefit the design of spherical robots. For example,
it is possible to form objects that are purely circular in one
plane, but asymmetrical in another plane (such as a football),
allowing for both increased maneuverability over objects and
high efficiency over flat ground. The notch also helps allow the
bean to increase traction during jumping and rolling. Although
current rolling robots cannot yet hop, the use of a notch may
enable these robots to do so.

Using our computational model, we were able to show
that the search behavior of the bean can be mimicked using

relatively few rules. The simplicity of the jumping-bean search
algorithm may be useful for designing navigation systems
for small-scale robots (Melhuish and Lane 1999), such as
solar-powered mechanical jumping beans for micro-robotics
applications. For example, under strong light, a collection
of such robots could show a ‘hiding’ response, by jumping
randomly until the beans are hidden in the shadows of
objects. The programming of the beans as agents is thus
very simple: their only rule is to stop jumping once their
preferred temperature is achieved. This suggests a very simple
modality for detecting temperature gradients, and potentially
a very cheap sensor, as we demonstrated in testing with
a commercially available robot. Other gradients (chemical,
light) could be sensed using this logic, and because of the
simplicity of the hardware used, such behaviors may be applied
for surveillance activities on the small scale.
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