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Raindrops push and splash flying insects
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In their daily lives, flying insects face a gauntlet of environmental challenges, from
wind gusts to raindrop impacts. In this combined experimental and theoretical study,
we use high-speed videography to film raindrop collisions upon both flying insects
and dynamically scaled spherical mimics. We identify three outcomes of the collision
based upon the insect’s mass and characteristic size: drops push the insect while
remaining intact, coat the insect, and splash. We present a mathematical model that
predicts impact force and outcome consistent with those found in experiments. Small
insects such as gnats and flies are pushed by raindrops that remain intact upon
impact; conversely, large flyers such as locusts and micro-aerial vehicles cause drops
to splash. We identify a critical mass of 0.3 g for which flyers achieve both peak
acceleration (100 g) and applied force (104 dyn) from incoming raindrops; designs
of similarly massed flying robots should be avoided. C© 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4865819]

I. INTRODUCTION

New manufacturing techniques have unleashed an array of insect-sized flying robots, also known
as micro-aerial vehicles (MAVs), envisioned for use in surveillance and reconnaissance.1–4 Although
MAVs are to be deployed outdoors, studies are generally conducted in still air rather than the complex
conditions presented in nature. How can MAVs be designed to withstand in-flight perturbations from
wind gusts and rain? Answering this question will help us design more robust flying robots.

Inspiration for robust and efficient flight is readily found in nature. For millions of years,
flying insects have been challenged by in-flight collision with falling drops (Fig. 1). Rain of various
intensity, dripping from overhanging leaves, and splashes from cascades all generate drops that may
strike an insect mid-flight.5, 6 A raindrop,7 like that depicted in Fig. 2, can have a mass m1 = 4−100
mg, radius R1 = 1−4 mm, and speed u1 up to 10 m/s. Their shapes can vary from a sphere for small
drops, to flattened shapes for large drops.

Previous studies of flight in rain focus on vertebrate flyers such as bats and birds, whose mass
is much larger than raindrops. Flying bats exhibit higher metabolic consumption when flying in
rain, mainly due to their additional wet mass.8 Hummingbirds fly in rain to feed, and can shake
off accumulated water mid-flight to reduce the cost of carrying wet feathers.9 These animals are so
large they suffer multiple raindrops in a single wingbeat. Such studies are likely not applicable to
understanding how an insect flies in the rain because of the insect’s much smaller size compared to
vertebrate flyers.

Most flying insects are so small that falling rain appears as discrete in-flight perturbations. The
mechanics of this impact is complex, and has only been studied in detail in the limit of small insect
size. In 2012, Dickerson et al.10 showed a mosquito can survive impact with a raindrop of 50 times
greater mass. The mosquito’s low mass decreases its impact force by a factor of 102 relative to
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(a)

(b)

FIG. 1. Raindrop impacts upon (a) a house fly, recently deceased and standing on the ground, and (b) a live mosquito fixed
to the ground.

impact on a mosquito resting on a branch.10 This study investigates how more massive insects, from
a 1 mg mosquito to a 1 g dragonfly, survive impact.

Fig. 3 shows the relation between non-dimensional mass m2/m1 and effective radius R2/R1,
where R2 is taken to be half the wingspan, of 21 insects from literature.11–21 We find insect wingspan
scales with mass as W ∼ m0.44

2 (R2 = 0.91), where mass spans 1–1200 mg and wingspan W spans
2–50 mm. In this study, we build insect mimics within this range to investigate how the size of
insects affects drop collisions.

Nearly all flying insects are adapted for contact with water. Insect wings are covered with micro-
and nano-scale structures which enhance hydrophobicity, enabling the wings to be cleaned more
easily.22 Butterfly wings, in particular, have directional adhesion which aids in shedding drops.23

The adaptations of these animals suggest a primal relationship between insects and rainfall.

FIG. 2. Schematic diagram illustrating drop impact modes. A drop initially strikes the unsupported target, and based on the
relative size and speed of the two objects, continues onward to one of three modes of impact. Here, we define variables used
throughout our analysis, where δ is the boundary layer thickness upon drop deformation, χ is the increase in drop radius, h
is the shell thickness of a coating drop, and e0 is the film thickness during splashing.
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FIG. 3. The relation between radius ration R2/R1 and mass ratio m2/m1 of insects11–21 and flying robots.1–4 Boundaries
between impact modes are drawn from theory. Insects and robots are listed in order of increasing mass.

Although drop impact has been studied for decades,24, 25 little is known regarding impact upon
a small free body such as a flying insect. The closest situations to the one of interest are impact
between two drops and impact between a drop and an immovable solid. In the first, several outcomes
are possible, including bouncing, coalescence, disruption, and fragmentation. The resulting outcome
depends exclusively on drop size, their relative velocity, and degree of offset at collision.26 Other
studies focus on collision of two drops of differing size, viscosity, and surface tension.27 The topic
of this study, the impact of a drop upon a small free body, may be considered as the impact between
two drops of vastly different viscosity.

Drop impact upon an immoveable solid surface may be considered as a limiting case of drop
impact on a free body. As the free body grows in size to that of a large bird or aircraft, it is clear
raindrops will splash upon collision. It is not yet clear, however, where the splashing threshold
lies in terms of free body properties such as density, curvature, and impact speed. Drops striking
solid surfaces experience one of multiple modes of impact: deposition, splashing, receding breakup,
partial rebound, or complete rebound.25, 28 Mode selection depends upon drop size, speed, impact
orientation, as well as properties of the solid such as surface texture and curvature.29–34 Here, we
clarify the onset of splashing in terms of free body properties such as density, curvature, and impact
speed.

In this combined theoretical and experimental study, we investigate drop impact onto free bodies
of varying mass and size. In Sec. II, we begin with our experimental methods for creating such
impacts. In Sec. III, we present the observed impact outcomes and corresponding acceleration and
forces applied. In Sec. IV, we proceed with a mathematical model for predicting impact outcomes.
We compare these theoretical predictions to our experimental measurements in Sec. V, paying
particular attention to the prediction of the impact mode outcome and impact force on biological
and synthetic flyers. We discuss our theoretical simplifications and avenues for future research in
Sec. VI, and summarize our conclusions in Sec. VII.

II. EXPERIMENTAL METHODS

We build 18 spherical and 10 cylindrical mimics, whose masses of 1–1000 mg and radii of
1–10 mm, are shown in Fig. 4. The mimics span the range of most flying insects (Fig. 3). In
designing mimics, we neglect insect legs, wings, and wetting properties. Spherical mimics consist of
an assortment of materials, including steel ball bearings, wooden beads, clay balls formed by hand,
and styrofoam pellets. Additional mimics of cylindrical shape increase the mass range achievable
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FIG. 4. The relation between radius ratio R2/R1 and mass ratio m2/m1 of insect mimics used in our experiments. Colors of
data points, as listed in the legend, represent experimental observations of impact mode. Experiments are performed using a
drop of radius R1 = 1.1 mm depicted by the cross. Boundaries between regions are calculated using theory. Black outlines
surrounding data points indicate a cylindrical mimic was used, while the data points without borders indicate a sphere was
used (Multimedia view). [URL: http://dx.doi.org/10.1063/1.4865819.1]

by spherical mimics. Cylinder mass is easily varied by the insertion of steel or wooden cores and
wrapping the outer layer of styrofoam with scotch tape. To ensure at least some similarity to filming
of the spherical mimics, cylinders are filmed so that their circular cross-section faces the camera.

To mimic flight, we freely suspend mimics in the air. A drop falling from a nozzle breaks an
infrared beam, causing a high-speed solenoid to retract, leaving the mimic momentarily unsupported,
and poised to be struck by a drop. Details of this method are given in Dickerson et al.10 Mimic
impacts are filmed at 1950 fps with a Phantom Miro 4C. We estimate acceleration of the mimic
using the change in velocity over one video frame (513 μs). Acceleration measurements of mimics
are performed at two incoming drop speeds, 2.2 m/s and 5 m/s. We combine both data sets in this
study. We do not expect this variation in drop speed to substantially affect acceleration of the mimics,
which varies by several orders of magnitude over the masses considered.

III. EXPERIMENTAL RESULTS

We perform a series of drop impact experiments, filmed using a high speed camera (see sup-
plementary video multimedia view in Fig. 4 caption). Drops strike three species of live insects,
mosquitoes, fruitflies, and houseflies. In addition, we film the drop impact of 28 insect spherical and
cylindrical insect mimics. We categorize the impacts into three distinct modes, pushing, splashing,
and coating. Fig. 4 shows the observed modes of impact, based upon the mass and size of the mimic.
In this section, we introduce each of the modes and provide measurements of the impact force. For
the discussion henceforth, we consider an incoming drop of mass m1 = 5 mg, radius R1 = 1.1 mm,
and speed u1. Our choice of raindrop size corresponds to an average raindrop in nature.7, 35, 36 The
drop collides with a spherical insect of mass m2 and radius R2 hovering in mid-air.

A. Pushing

Mimics of mass less than 3 mg represent the smallest insects, such as mosquitoes, blackflies,
and fruit flies, which account for 20% of the mimics considered. These mimics are shown by the

http://dx.doi.org/10.1063/1.4865819.1
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TABLE I. Impact mode requirements and characteristics in relation to drop mass m1 and radius R1, and target mass m2 and
radius R2.

Impact Definition Conditions Acceleration Targets
mode of mode for mode of target Insects Mimics

Push Drop remains intact m2/m1 � 1 R2/R1 ≤ 1 High Mosquitoes, gnats Styrofoam
Coat Drop surrounds object m2/m1 ≥ 1 R2/R1 ≤ 1 Medium - low Tethered fruit flies Metals
Splash Drop fragments upon

impact
m2/m1 > 1 R2/R1 � 1 Negligible Bees, cicadas,

dragonflies
Woods, metals

seven blue points in Fig. 4, and the insects they represent by the four leftmost symbols in Fig. 3.
Such insects have less mass than raindrops, but comparable wingspan to a raindrop (Table I).
Experiments in this mass range reveal that drops, surprisingly, remain intact during impact. Fig. 5(a)
shows a pushing impact with a 1 mg mosquito; Fig. 5(b) shows a qualitatively similar impact with
a styrofoam sphere of mass 0.6 mg.

During impact, the drop is deformed, increasing in radius as much as 80%, but still insufficient
to cause breakup, which requires a radius increase37 of more than 300%. The contact region of
the impact remains small, constrained to the top hemisphere of the mimic. After impact, the mimic
remains trapped under the drop, and relative motion ceases between the two. Neglecting aerodynamic
drag, conservation of linear momentum yields the final velocity u′ of the combined mass system is

u′

u1
=

(
1 + m2

m1

)−1

. (1)

Thus, the new falling speed of the combined drop-mimic is determined by the ratio of the insect
mass to raindrop mass. For the smallest insects, this falling speed is often quite close to the initial
raindrop speed. In this regime, fruit flies fall the fastest with 95% of the raindrop speed; mosquitoes
and black flies the slowest with 80%–90% the speed. We will apply the model of inelastic impact,
given in Eq. (1), as an estimate of other drop-mimic speeds in our modeling in Sec. IV.

B. Splashing

The vast majority of insects in Fig. 3 have mass 10 mg–1 g and wingspans ranging from 2 mm
to 50 mm. Examples include the plume moth, crane-fly, and bumblebee. These insects are generally
heavier than raindrops and have wingspans much larger than a raindrop diameter (Table I). Fig. 6(a)
shows a tethered housefly which causes an impacting drop to shatter. Fig. 6(b) shows splashing on
a wooden sphere, where the drop begins to break apart prior to the entire drop making contact. This

(a)

(b)

FIG. 5. Pushing: (a) A mosquito and (b) a styrofoam mimic pushed downward by a falling drop. The graphs show the time
course of position of the targets (closed symbols) struck by a drop (open symbols). The shaded area denotes the duration of
contact with the drop.
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(a)

(b)

FIG. 6. Splashing: (a) A tethered housefly and (b) wooden sphere experiencing a splashing impact. Graphs (a) and (b) show
the position (open symbols) of the bottom edge of a raindrop. The dashed lines show the position of mimic if no impact
occurred. The pink shaded area denotes the duration of contact with the drop.

mimic is accelerated only slightly on impact. Mimics which are splashed are denoted by the green
points in Fig. 4.

The largest and most massive flying creatures (m2/m1 � 1, R2/R1 � 1) will create prompt
splashing producing coronas.25 These include birds with masses greater than 10 g and with nearly
flat surfaces (whose radii of curvature exceed 100 cm). Such impacts mimic those on unyielding
surfaces and will produce impact forces greater than 50 000 dyn.10

C. Coating

Since flying insects are less dense than water, insects of comparable size to a raindrop, but
heavier in mass, do not exist. For the sake of completeness, we investigated the impact of raindrops
on objects of mass 1 mg–1 g but of comparable size to a raindrop (Table I). Such objects correspond
to an insect standing atop a hard unyielding surface such as a branch.

One example is shown by the fruit fly tethered to a thin wire in Fig. 7(a). If the insect were
untethered, a pushing impact would occur. However, the wire resists the motion of the insect, causing
it to be coated by the drop. As shown by Fig. 3, most insects are too large and lightweight to be
coated. Coating impacts would be maladaptive to insects because they increase the surface area in
contact with the fluid.

(a)

(b)

FIG. 7. Coating: (a) A fruitfly and (b) steel sphere mimic coated upon impact. Graphs (a) and (b) show the vertical position
of the bottom edge of a raindrop (open symbols). Closed points show the vertical position of the mimic. The dashed lines
show the position of mimic if no impact occurred.
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Fig. 7(b) shows an untethered steel sphere coated by a raindrop. The drop flows around the
mimic, covering its entire surface before continuing onward. During this process, the 2.2 m/s drop
accelerates the mimic only slightly, increasing its velocity from 0.26 to 0.58 m/s. Most of the
momentum of the drop is not transferred to the mimic, but instead flows around the target. After
striking the object, the fluid re-forms into a drop, momentarily encapsulating the mimic before
draining. Mimics which were coated are denoted by the red points in Fig. 4.

We further recognize a mode of impact which is a combination of splashing and coating, shown
by the turquoise points in Fig. 4. In this mode, part of the drop coats the insect while part splashes,
and we denote such impacts as a coating-splashing transition.

Rain is known to capture airborne particles, such as pollen and dust, as it falls.38 Based on our
observations, small particles impacted dead-on by raindrops will be encapsulated by a drop until
collision with the ground. One of the very smallest insects, the parasitic wasp with a mass of about
0.03 mg,11 would likely succumb to the same fate.

D. Impact acceleration

We rate impacts based on acceleration and impact force, which we discuss in turn. Fig. 8 shows
the mimic’s acceleration in terms of number of gravitational accelerations, g = 9.81 m/s2. Pushing
and coating accelerates impacts by 100–400 g. The splashing region has much lower acceleration
(20–50 g). This lower effectiveness of momentum transfer can be observed in the fragmented
droplets, continuing downward or radially from the mimic. To give perspective on the magnitude
of these accelerations, we note the human39 limits for acceleration are about 50 g, the limits for
fleas40 jumping are 135 g. In comparison, impact by a falling raindrop can generate even higher
accelerations.

The clear trend in Fig. 8 suggests that a scaling is possible. For impact of a drop of constant
size and drop speed, we expect the acceleration aimpact to scale as the ratio of object’s final speed u′

to the impact time τ ,

aimpact = u′/τ. (2)

FIG. 8. The relation between acceleration in number of gravities aimpact/g and mass ratio m2/m1, for mimics struck by drops
falling at 2.2–5 m/s. The line of best fit has R2 = 0.45. Delineated regions denote impact outcome, based on experimental
observation.
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FIG. 9. The relation between impact force Fimpact (circles) and mass ratio m2/m1, for mimics struck by drops falling at
2.2–5 m/s. The relation between mimic weight (squares) and mimic mass is shown for comparison. Delineated regions denote
impact outcome, based on experimental observation.

By substituting in Eq. (1) for u′, aimpact scales as

aimpact = 1

τ

u1

1 + m2/m1
∼ b

c + m2/m1
. (3)

The fitting constants b = 1.45 × 105 m/s2 and c = 60 are found using the method of least squares.
Although the fit is modest (R2 = 0.45), the trend line in Fig. 8 encapsulates the trends observed.
For mass ratios m2/m1 = 10−2−10, which translates to m2 = 10−4−0.05 g, impact acceleration is
roughly constant. After a mass ratio of 10, the acceleration decreases nonlinearly with mimic mass.
In particular, an increase in mass ratio by a factor of ten from 20 to 200 causes the acceleration to
decrease by a factor of five.

The magnitude of the absolute force provides further insight into the damages that a flying
insect may face. Impact acceleration may easily be translated into a maximum impact force Fimpact

such that

Fimpact = m2aimpact. (4)

Fig. 9 shows the relation between maximum force Fimpact and the mimic-drop mass ratio. Surprisingly,
the trend is opposite to the acceleration trend in Fig. 8, for which the smallest mimics receive the
highest acceleration. Instead, the heaviest mimics sustain the largest forces (102−104 dyn), with the
largest force at 4 × 104 dyn. This is close to the maximum force applied by an unyielding surface,
F ∼ m1u1/τ ≈ 7 × 104 dyn. The lightest mimics sustain forces of 100 dyn, indicating that their low
mass is effective in reducing the force of impact.

Based on our measurements of impact force, we observe splashing impacts are the least effective
at transferring momentum. The mimics in the splashing region in Fig. 8 likely experience half of
the impact acceleration they would have if the drop had remained intact. In Sec. IV, we present a
mathematical model for predicting the mode of impact based on insect size and mass.
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IV. MODEL

In this section, we present a theory for the mass and size range for the three distinct modes
of impact, shown graphically in Fig. 2. In the push regime, the impact is inelastic, and so the
kinetic energy may be easily calculated using Eq. (1). We will use this relation to calculate the
conditions for the push-coat and push-splash thresholds. We seek a relation between the object mass
and radius that yields an impact that is just on the border of pushing and coating. Our strategy is to
use conservation of energy to yield a relation between two regimes. We use a similar method for
calculating the conditions distinguishing a push from a splash impact. Finally, we consider a force
balance to investigate the threshold between coating and splashing. In the theory below, this insect
is assumed to spherical for simplicity, but modifications can be made for other insect shapes.

A. Dimensionless parameters

In the following analysis of raindrop impact onto a free-flying insect, a number of dimensionless
groups arise upon non-dimensionalization of our governing equations. The groups are typical of both
two-body impact problems, e.g., Eq. (1), and in studies of drop impact. The groups include

α = m2

m1 + m2
= mimic mass

combined mass
β = R1

R2
= drop radius

mimic radius

Re1 = R1u1

ν
= drop inertia

drop viscosity
We1 = ρu2

1 R1

σ
= drop inertia

drop surface tension
. (5)

The first two groups describe relative masses and sizes of the two bodies. The group α relates the
inertia of the insect to the combined inertia of the drop-cum-insect, and emerges upon consideration
of the kinetic energy before and after impact. The group β relates the relative sizes of the two objects,
which is important in considering surface energy involved. Specifically, β2 relates the surface areas
of the drop to the mimic. The next two dimensionless groups are quite common in drop impact
problems. Reynolds and Weber numbers for the drop size and speed considered in our model are
Re1 = 5300 and We1 = 365, respectively, where the properties of the drop include water density ρ =
1000 kg/m3, kinematic viscosity ν = 10−6 m2/s, and surface tension σ = 72.8 dyn/cm. The Reynolds
number is used in calculation of dissipated energy within the boundary layer within the drop as it
strikes the mimic. The Weber number indicates the importance of the drop’s inertia to capillarity.
In studies of impact on unyielding surfaces, large Weber number typically indicates splashing.25

However, in the case of impact on a free target of variable mass, the outcome depends on the mass
and size of the object as we determine in the analysis below.

B. Push-coat threshold

We employ an energy balance on the drop before and after impact41, 42 to predict the transition
from a drop’s pushing its target downward to the drop coating its target. Denoting the post-impact
energy using primed notation, conservation of energy states

Ek + E p + Es︸ ︷︷ ︸
before impact

= Ek
′ + E p

′ + Es
′ + Ed

′︸ ︷︷ ︸
after impact

, (6)

where Ek, Ep, Es, and Ed are kinetic, potential, surface, and dissipative energies, respectively. Mass
conservation dictates the mass of the drop remains unchanged throughout the impact: namely,
m1 = m ′

1. We take E p = E p
′ by assuming the drop does not substantially change in elevation with

respect to the target just prior to and after the collision.
At the border of coating and pushing, the impact is inelastic and the drop surrounds a spherical

target and remains adhered as in Fig. 2. Initial kinetic and surface energies, Ek and Es, remain
unchanged for all impacts. We calculate E ′

s and E ′
d based upon the lowest-energy coating scenario,

considering the flows that occur as the drop deforms from a sphere to a spherical shell coating
the mimic. At conditions away from this threshold, the assumptions we have made about drop
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deformation and impact kinetics become inaccurate. We therefore define a term which captures the
error in our calculation of the energy balance in Eq. (6), given by


E = Ek + Es − E ′
k − E ′

s − E ′
d . (7)

The sign of 
E determines which impact mode will be witnessed. During pushing, the drop does
not form a complete spherical shell around the mimic, and so our method overestimates the surface
E ′

s , and dissipative E ′
d , energies. Thus, we expect the error 
E to be negative if the impact is a push.

Conversely, a faster incoming drop would flow around the target and continue past it as in Fig. 7.
This would lead to more residual kinetic energy E ′

k than that calculated using an inelastic impact,
and so an underestimated E ′

k . Thus, we expect the error 
E to be positive if the impact is a coat.
Together, our relation for distinguishing pushing from coating is


E

{
< 0 push

> 0 coat.
(8)

To complete this analysis, we now write relations for all the terms in Eq. (7). The initial kinetic and
surface energies of the system may be written as that of a spherical drop,

Ek = 1

2
m1u2

1, (9)

Es = 4πσ R2
1 . (10)

These energies are converted into several terms throughout the impact process, including the final
kinetic and surface energies of the drop-cum-mimic, and the irrecoverable dissipation during impact.
We now estimate these final energies of the system post-impact.

The final kinetic energy is estimated as that for inelastic impact,

E ′
k = Ek,inelastic = 1

2
(m1 + m2) (u′)2, (11)

where we use Eq. (1) to substitute for u′. This equation represents the greatest possible kinetic
energy change for the system, as inelastic impact slows the drop more than other impact types. This
estimate will be accurate for pushing, but will be an underestimate for high-speed coating flows in
which the fluid continues flowing past the mimic.

We write the final surface energy as that associated with a spherical shell surrounding its target
as illustrated by Fig. 2. This surface energy is comprised of the energy in the solid-liquid surface
and the air-liquid surface,

E ′
s = 4πσ R2

2 (1 − cos θ )︸ ︷︷ ︸
solid-liquid surface

+ 4πσ
(
R3

1 + R3
2

) 2
3︸ ︷︷ ︸

air-liquid surface

, (12)

where θ is the contact angle of water on the target.
Viscous dissipation arises from the drop’s deformation upon impact. The time-scale of defor-

mation is τ ≈ 2R1/(u1 − u′). To calculate dissipation, we apply a method, by Pasandideh-Fard41 and
Mundo,42 for estimating dissipation during impact of drops onto flat surfaces. Dissipation occurs as
the fluid undergoes shear within the boundary layer. Using stagnation point flow, this layer can be
estimated to be of thickness41 δ = 4R1/

√
Re, where the Reynolds number Re =R1(u1 − u′)/ν. The

viscous dissipation per unit mass34 is 
 = μ
(

∂vi
∂x j

+ ∂v j

∂xi

)
∂vi
∂x j

≈ ρν(u1 − u′)2/δ2.

The volume of the boundary layer is approximated by considering the deformation of a drop into
a spherical shell that encapsulates the impacted object. At the end of the impact, the drop assumes a
spherical shell of thickness h = (R3

1 + R3
2)

1
3 − R2. We model this process as the flattening of a drop

of radius R1 to Rmax =
√

4R3
2/3h, where Rmax is the effective radius of a disc of height h and the

original volume of the drop. The volume of fluid over which dissipation takes place is approximated
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by � ≈ π R2
maxδ. The total dissipation, E ′

d , within the drop is

E ′
d =

∫ τ

0

∫
�


 d� dt ≈ 
�τ. (13)

The energy lost due to viscous dissipation may be approximated by substituting 
, �, and τ into
Eq. (13), yielding

E ′
d = 1

2
ρνπ R2

max(u1 − u′)
√

Re. (14)

By substituting Eqs. (9)–(12) and (14) into Eq. (6) and rearranging, we arrive at


E = 1

2

[
m1u2

1 − (m1 + m2) (u′)2
] + 4πσ

[
R2

1 − R2
2 (1 − cos θ ) − (

R3
1 + R3

2

) 2
3

]
−1

2
ρνπ R2

max

(
u1 − u′)√

Re,

(15)

where m2 and R2 are the only non-constant terms.
We may non-dimensionalize Eq. (15) by dividing by ρπu2

1 R3
1, yielding a dimensionless energy


E∗ = α

[
1 − (Re1)−

1
2

β(β3 + 1)
1
3 − β

]
+ 6

We1

[
cos θ − (1 + β)

2
3

]
, (16)

where α and β are defined in Eq (5) and our push-coat criterion is


E∗
{

< 0 push

> 0 coat.
(17)

Equations (16) and (17) are physically consistent in light of limits of dimensionless groups
involved. Note the second term in Eq. (16) is negative because 0◦ < θ < 180◦. Thus, for very low
inertia or very high surface tension, We1 → 0, 
E* decreases, indicating that pushing the target is
now favorable. In the limits of either high viscosity, Re1 → 0, or for superhydrophobic targets, cos θ

→ −1, the dimensionless energy 
E* decreases, promoting pushing. We plot the curve given by
Eq. (16) in Fig. 4 to predict the threshold between pushing and coating, by specifying values of m2/m1

and plotting values of R2/R1 for which 
E* = 0. No free parameters are employed in computing the
push-coat transition Eq. (15).

C. Push-splash threshold

In Sec. IV B, we determine the threshold between the push and coat modes. In coating, we
assume the drop completely coats its spherical target. In this section, we use observations from
our experiments to make several modifications to this physical picture to consider splashing. First,
more residual kinetic energy remains in splashing than in coating at the end of the impact. Second,
splashing coats the target less than a coating impact.

In this section, we calculate the final kinetic energy E ′
k using an inelastic impact model, and

the final surface E ′
s and dissipative E ′

d energies using a model for drop deformation, or flattening,
upon impact. If the drop’s initial kinetic Ek and surface Es energies are too high to be absorbed into
surface energy and dissipation, the drop will splash. Our model for E ′

k , E ′
s , and E ′

d becomes invalid
if the drop breaks apart, but remains valid if the drop stays intact.

We begin with Eq. (13) as before, but consider instead the boundary layer volume � ≈ π

(R1 + χ )2δ occupied by a disk of radius R1 + χ and height δ. We apply a method we previously used
to model the deformation of a drop upon a sphere.10 Impact increases the radius R1 by an amount χ ,

χ

R1
∼

√
We1

(
m1

m2
+ 1

)−1

. (18)
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A more detailed derivation of Eq. (18) may be found in Dickerson et al.10 For the remainder of
this section, we use a scaling factor of unity in Eq. (18); this scaling factor will be used as a free
parameter when when we compare our theory to experiment in Section V. Combining Eq. (18) with
Eq. (13), and now using R1 + χ in place of Rmax to determine the volume of dissipating fluid �, we
arrive at the dissipation

E ′
d ≈ 
�τ ∼ 1

2
ρνπ (R1 + χ )2 (u1 − u′)

√
Re. (19)

Assuming the drop flattens into a disc upon impact, we estimate the final surface energy as the
sum of the solid-liquid energy and the air-liquid energy,

E ′
s = πσ (R1 + χ )2 (2 − cos θ ) . (20)

Combining Eqs. (9)–(11) and (18)–(20) for the push-splash threshold, we may rewrite Eq. (7)
as


E = 1

2

[
m1u2

1 − (m1 + m2) (u′)2
] + πσ

[
4R2

1 − (R1 + χ )2 (2 − cos θ )
]

−1

2
ρνπ (R1 + χ )2 (u1 − u′)

√
Re,

(21)

where m2 is the only non-constant term.
We may non-dimensionalize Eq. (15) by dividing by ρπu2

1 R3
1, yielding a dimensionless energy


E∗ = 2

3
α + 4

We1
−

(
1 + 2α

√
We1 + α2We1

) [
2 − cos θ

We1
+ α

3
2

2
√

Re1

]
, (22)

and our push-splash criteria as


E∗
{

< 0 splash

> 0 push.
(23)

In Eq. (22), we can reason that as m1 increases, the corresponding decrease in the combined mass
ratio α will increase 
E*, promoting pushing. This is consistent with our experiments, in which
decreasing m2/m1 produces smaller drop deformations and subsequently, pushing.10 Similarly, as the
target becomes more hydrophobic, cos θ → −1, 
E* will decrease, promoting splashing. We plot
the vertical line given by Eq. (22) in Fig. 4 to predict the threshold between pushing and splashing,
by specifying values of m2/m1 for which 
E* = 0. Unlike Sec. IV B, the energy balance given
in Eqs. (21) and (22) has no dependence on R2/R1. Such a result occurs because we assume drop
deformation is unaffected by mimic size in Eq. (18). We justify this approximation in the regime in
which mimic radius exceeds drop radius (R2/R1 > 2), which is the region of interest, as shown in
Fig. 4.

D. Coat-splash threshold

At the threshold of coating and splashing, the drop deforms beyond a point where pushing is
possible. The drop flattens sufficiently that it forms a thin film on the top of the target, after which
two outcomes can occur: it can remain adhered, creating a coat, or shed off in a ligament or drops,
creating a splash. Consideration of attachment or separation from the target’s curved surface is a
solved problem called the teapot effect.43 To determine the conditions for distinguishing a coat from
a splash, we consider a force balance between inertial and adhesive forces for the flow around a
curved surface.44

Duez et al.44 report a critical Weber scaling that characterizes the transition between fluid
attachment and separation. We apply their theory using the relative velocity between drop and
mimic, u1 − u′, and the length scale given by the film thickness e0 
 R2

1/2R2, estimated from the
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Bernoulli equation, to define a Weber number,

We∗ = ρ(u1 − u′)2e0

σ
. (24)

A radial force balance equates centrifugal forces with the adhesion forces of the fluid to the
sphere. This force balance can be written in non-dimensionalized form

We∗ ∝ R2
2

e2
0

(1 + cos θ ) . (25)

During splashing, inertial forces dominate and so Weber number is above the critical value above.
Thus,

We∗
{

< R2
2 (1 + cos θ ) /e2

0 coat

> R2
2 (1 + cos θ ) /e2

0 splash.
(26)

By equating expressions for We∗ given by Eqs. (24)–(26), we write the condition for splashing,

R2 <

[
ρR6

1(u1 − u′)2

σ (1 + cos θ )

] 1
5

. (27)

We may non-dimensionalize Eq. (27) by dividing by ρπu2
1 R3

1, yielding a radius ratio

R2

R1
<

[
α2We1

(1 + cos θ )

] 1
5

. (28)

A drop with a very high initial velocity, producing a large We1, and a target with a hydrophobic
surface such that cos θ → −1, promotes splashing by increasing the right-hand-side of Eq. (28).
We plot the curve specified by the threshold given in Eq. (28) by specifying values of m2/m1 and
plotting values of R2/R1, which satisfy the equality. No scaling coefficient was required to shift the
curve to the intersection of the curves plotted by Eqs. (16) and (22).

V. COMPARISON OF THEORY TO EXPERIMENT

Previously, we presented implicit equations, Eqs. (16), (22), and (28), for the mass-radius
coordinates of each impact mode. We use Mathematica to numerically solve these equations by
inputing a mass ratio m2/m1 and calculating a corresponding radius ratio R2/R1 which solves the
equations. Although insects are hydrophobic, we perform experiments with hydrophilic mimics.
Thus, we assume in our calculations that the contact angle of water on the mimics is θ = 80◦.

We have freedom to choose where to terminate each curve, and so we terminate curves given
by Eqs. (16) and (22) at their point of intersection. For the push-splash transition, in Eq. (18), we
use a free parameter of 0.7 to shift the curve given by Eq. (22), such that the curve segregates our
experimental data points appropriately. As shown in Fig. 4, our theoretical predictions for impact
mode match well our experimental observations. Only a few points stray from their predicted zones.
We proceed to use our findings to predict impact phenomenon on organisms.

A. Predictions for insects and flying robots

Fig. 3 shows the predicted impact modes for various insects. The model predicts that insects
above 100 mg will splash, which seems quite feasible. Inaccuracies are due to our modeling the
insect wing, which is flat, as a curved surface. Consequently, the smallest insects lie at the coating-
pushing border rather than within the push regime. Mosquitoes in particular are known to be pushed
by raindrops.10 Another inaccuracy is in the coat regime: four insects lie just within the coat regime
rather than within the push regime.

We apply our model to predict the effects of raindrop impact on flying robots. We consider four
robots, including Harvard’s Microrobotic Fly, Cornell’s Micro-Air Vehicles I-II, and the Delfly,1–4

whose mass and half their wingspan is given in Fig. 3. All robots are within the splashing zones.
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Pushing is not possible, as the robots are 2−4 orders of magnitude too heavy, and 1–2 orders of
magnitude too large. Most would need radii two orders of magnitude less than their current values to
be in danger of coating. The Harvard microrobotic fly is most in danger of coating: if its wingspan
were 3 mm rather than 1 cm, its wings would be coated by the drop. In fact, it is likely that parts of
the body which are more slender than the wings will be coated if they are struck by a drop.

B. Acceleration and force resistance for small and large insects

We now consider the effects of scaling on raindrop impact. Scaling is particularly useful as
flying insect masses range over 6 orders of magnitude, and synthetic flyers span an additional order
of magnitude.

We consider two regimes, the limit of very lightweight and very heavy insects. Small insects
have an impressive ability to survive very large accelerations. For example, fleas can survive 135
g during jumping, and a mosquito 300 g during raindrop impact.10 This increasing tolerance to
acceleration at small sizes can be explained using scaling.

Fig. 3 shows that impact accelerations aimpact/g asymptote to a constant value of 250 for small
sizes. This value arises from consideration of Eq. (3), for which the acceleration due to drop
impact, aimpact ≈ b

c+m2/m1
= b/c

1+m2/cm1
. For small insects, which have a mass m2 � cm1 = 0.3 g,

the acceleration due to drop impact approaches a constant, b/cg ≈ 250. Although this acceleration
is high, smaller insects, are relatively more capable of surviving accelerations. This increasing
strength at small sizes is due to the strength scaling of materials, observed first by Leonardo da
Vinci, and reported by McMahon45 and Schmidt-Nielson.46 Materials of the same composition have
a constant yield stress, and so the maximum force Fmaterial a material can withstand scales as its
cross-sectional area, Fmaterial ∼ m2/3

2 . Using Newton’s second law, Fmaterial = m2amaterial, the impact
acceleration a material can withstand scales as amaterial ∼ m−1/3

2 . As insects become smaller, the
maximum acceleration a material can withstand will exceed that provided by a raindrop: amaterial >

aimpact. Thus, smaller insects are invincible with respect to acceleration caused by drop.
As insects increase in size, the force of raindrop impact becomes small compared to both the

insect weight and the force their materials can withstand. Fig. 9 shows that as an insect grows larger,
the force from a raindrop asymptotes to a constant value of 104 dyn. This results from consideration
of Eq. (4), for which the force due to drop impact, Fimpact ≈ bm2

c+m2/m1
= bm2m1

cm1+m2
. For large insects,

which have a mass m2 � cm1 = 0.3 g, the force due to drop impact Fdrop approaches a constant, bm1

≈ 7 × 104 dyn. This scaling is adaptive for larger insects, which become relatively more capable of
surviving force. The force of raindrop impact will be exceeded by both an insect’s weight, scaling
as m2, and the force its materials can withstand, which scale as m2/3

2 . A small bird with mass m2

= bm1/g = 74 g receives an impact force equal to its weight. A Ladybird of mass 2 g receives an
impact force 1/10 of its weight.

VI. DISCUSSION

Our experiments involve several assumptions and simplifications which we review here. Since
fast drops cannot be easily aimed at our mimics, we employ drops of speed u1 = 2.2−5 m/s, which is
45%–75% slower than a terminal-velocity raindrop. Experiments conducted with terminal raindrops
would produce modifications to regimes in Fig. 4. Specifically, coating and splashing would occur
for lower radius R2 and mass m2 values. In addition, the acceleration and force on an insect will
increase (Fig. 9), as a greater amount of momentum is available for transfer to the object. Finally,
we assume only spherical drops of fixed size. However, as discussed by Reyssat,7 raindrops have a
range of size and shape. In particular, our transition lines in Fig. 4 may not be robust to changes in
drop shape.

Wings and legs increase the force of raindrop impact by increasing the insect’s aerodynamic
resistance. During the high accelerations applied, these structures provide added mass to the insect
and shift points to the right in Figs. 3 and 4. Insects with the largest wings for their size such as
butterflies will experience the greatest deviation from the predicted trends. Wings induce splashing
at mass values smaller than predicted in Fig. 3.
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Behavior of the insect will not likely influence impact force. The maximum speeds of most
insects is less than 10 m/s, the terminal speed of a falling raindrop.47 Even at slow flight speeds,
however, the formation of a boundary layer as a result of wing motion may help to dispel the smallest
drops. For instance, it is known the boundary layers formed on discs spinning at exceedingly high
speed may prevent drops from impacting the surface.48

In this study, we consider the impact outcome of a raindrop striking an insect. Conversely, one
might consider the fate of the insect during impact: does it fragment or splash upon striking an
incoming object? From our experiments and theoretical analysis in Sec. V B, we conclude that an
insect will not break apart from the force of a raindrop impact. However, as we know from common
experience, insect splashing does occur upon impact with automobiles. This splashing is due to
the high impact force imparted by the high momentum of the automobile. For example, if a 2-mg
mosquito is struck by an automobile traveling at 15 mph = 6.7 m/s, it will experience an impact force
of 9000 dyn, which is comparable to the force required to kill a mosquito. Larger insects may even
splash. If that same car strikes a 1-cm long 0.3 g insect, which is 150 times heavier than a mosquito,
the insect will experience an impact force of 240 000 dyn. A car traveling at higher speeds would
generate even higher impact forces, which explains why a car driving at 50 mph is often covered
with dead splattered insects.

VII. CONCLUSION

We perform raindrop impact experiments on free-falling insects and their mimics. By systemati-
cally varying the size and mass of the mimics, we observe three distinct impact modes which we refer
to as pushing, splashing, and coating. In our supporting theoretical study, we derive mathematical
relations for the regime of object mass and size associated with each impact mode. These regimes
are consistent with our experimental observations. The push-coat and push-splash transitions are
determined from consideration of energetics, whereas the coat-splash transition is determined from
the balance of centrifugal and adhesive forces.

Our study shows how flying in the rain is strongly affected by body size. Our lightest mimics
experience the highest impact accelerations of 300 g, but the lowest absolute forces of 100 dyn.
Conversely, the heaviest mimics experience the lowest accelerations of 20 g, but the highest impact
forces of 4 × 104 dyn. Based on our experiments with both mimics and insects, we predict insects
smaller than 2 mg are pushed by raindrops, whereas larger insects cause raindrops to splash.
Consequently, a modern MAV causes raindrops to splash, and should be designed to withstand this
force and to contend with splashes shed on its body.

We also identify a sub-optimal size for which objects are most poorly suited for dealing with
rain. Objects experience both peak acceleration and peak force at a critical mass of 0.3 g, about the
weight of a bumblebee. Biological organisms and synthetic flyers should avoid this mass if they are
to minimize acceleration and force due to rain.

ACKNOWLEDGMENTS

We thank Nihar Madhavan for his early experimental contributions and National Science Foun-
dation (NSF) CAREER (PHY-1255127) for financial support.

1 R. Wood, “The first takeoff of a biologically inspired at-scale robotic insect,” IEEE Trans. Robotics 24, 341–347 (2008).
2 G. De Croon, K. De Clercq, R. Ruijsink, B. Remes, and C. De Wagter, “Design, aerodynamics, and vision-based control

of the DelFly,” Int. J. Micro Air Vehicles 1, 71–97 (2009).
3 C. Richter and H. Lipson, “Untethered hovering flapping flight of a 3D-printed mechanical insect,” Artif. Life 17, 73–86

(2011).
4 F. Van Breugel, Z. Teoh, and H. Lipson, “A passively stable hovering flapping micro-air vehicle,” Flying Insects and

Robots (Springer, 2010), pp. 171–184.
5 G. J. Amador, Y. Yamada, M. McCurley, and D. L. Hu, “Splash-cup plants accelerate raindrops to disperse seeds,” J. R.

Soc. Interface 10, 0880 (2013).
6 D. Attenborough, Life in the Undergrowth (BBC One, 2005).
7 E. Reyssat, F. Chevy, A.-L. Biance, L. Petitjean, and D. Quéré, “Shape and instability of free-falling liquid globules,”
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