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Snakes can climb a range of surfaces, from tree trunks to brick walls, using a hitherto poorly understoodmecha-
nism. The bellies of snakes are covered in a series of flexible scales that can be activated by the snake to prevent
sliding. It is previously shown that conscious snakes can use this ability to double their friction coefficient relative
to unconscious snakes. In this combined experimental and theoretical study,we give further evidence that snakes
actuate their belly scales.Weperformexperimentswherewe slide snakes backwards atop an array of pillars. Our
theoretical model suggests that snakes that do not apply an opening moment to their scales should have quite
short contact with these pillars. In our experiments, snakes slide their ventral scales down the pillars, prolonging
contact. Our modeling suggests that this phenomenon can only occur if snakes apply amoment at the scale base.
We hope this result encourages further research in actively-generated friction.
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1. Introduction

Snakes are one of the few organisms that propel themselves by
sliding their bodies against the ground. Compared to limbed organisms,
this mode seems like a poor locomotory choice. However, snakes are
able to move their limbless bodies across a range of terrain, including
rock, sand, mud, and leaf litter. Moreover, they can propel themselves
both across flat ground and straight up trees and brick walls. Clearly,
such versatility suggests that they have adaptations to both reduce
and increase friction as they move. However, most studies of friction
cannot be directly applied to understand snake movement. Most fric-
tion studies rely on flat or gently rounded surfaces in contact, such as
tires and ball bearings. In contrast, biological surfaces such as snakeskin
can be scaly, involving consideration of soft flexible components
jamming or in stick–slip. Little work has been done on understanding
the frictional properties of such surfaces and how they are adapted for
increasing friction. The goal of this study is to understand how snakes
can resist sliding backwards.

Snakeskin has attracted a great deal of attention for its unique fric-
tional properties [1,2,3,4,5]. Their ventral scales in particular have
attracted many attempts to characterize their frictional properties.
Most studies involve deceased or unconscious snakes [1,2,3,4,5,6,7].
Classical studies of snake locomotion by Gray involve measurement of
the frictional properties of snakes sliding on different substrates such
as wood and metal [6,8]. Gray was the first to observe the frictional an-
isotropy of the snakeskin, the variation in friction coefficient μ according
to sliding direction. Friction coefficient μ is the ratio between sliding
r), hu@me.gatech.edu (D.L. Hu).
friction force and normal force. As shown in later experiments by Hu
et al., snakes have the lowest friction coefficient if sliding in the forward
direction, twice the friction in the lateral direction and four times the
friction in the rearward direction [9]. This anisotropy is due in part to
the macro-scale structure of the snake's ventral scales, which resemble
overlapping shingles.

One source of frictional anisotropy is microscopic features on the
ventral scales. Hazel et al. discover pawl-like microscopic features on
boa scales [2]. Using atomic force microscopy, they report that tail-to-
head friction coefficient of a single scale is 3–4 times that of the opposite
direction [2]. Gorb et al. study the micro-ornamentation and frictional
properties of various parts of the snakes, including dorsal, lateral, and
ventral regions [4]. They report that ventral scales have the highest
frictional anisotropy of 26%, compared to only about 4–5% for both lat-
eral and dorsal. These characteristics provide further evidence of a
unique specialization of the ventral scales toward friction enhancement
in locomotion. Frictional properties of snakeskin are also studied by
Abdel-Aal et al. [7]. Studying the shed skin of a Python regius, the re-
search maps out coefficients of friction for scales on all parts of the
body: lateral, dorsal, and ventral. They find that frictional anisotropy is
more significant in the ventral scales than any other part of the body [7].

Marvi et al. report that the friction coefficients of conscious corn
snakes are almost twice as those of unconscious snakes implying the
importance of active mechanisms [8]. They report experiments qualita-
tively showing the snake opening and closing its belly scales [8,10,11].
However, how such motion increases frictional anisotropy remains
unknown.

In this study, we investigate how snakes use their scales to resist
sliding. In Section 2, we describe a new method for recording the force
and displacement of a snake scale during sliding tests. We present in
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Section 3 a theoretical model for predicting the frictional force of a
single snake scale. In Section 4, we present evidence, based on our
model predictions, that snakes actively apply an opening moment to
their scales to prevent sliding. In Section 5, we give suggestions for
future work.

2. Methods

2.1. Animal care

Two juvenile corn snakes Pantherophis guttatus (Fig. 1a, b) used in
this experiment are cared for in captivity for the duration of our
experiments (N = 2, m1 = 0.73 kg, m2 = 0.85 kg, L1 = 131.3 cm, and
L2 = 139.5 cm). The snakes are fed weekly and housed in separate
terrariums with controlled temperature and humidity conditions.

2.2. Friction measurement

Wedesigned a device tomeasure the resistive force of a single snake
scale while permitting visualization of the snake scale. The device con-
sists of a series of vertical pillars of plastic film of thickness 0.12 mm
transparency sheet (3 M Dual Purpose CG5000 transparency film) cut
with a laser into dimensions 24.2 mm by 6 mm. We refer to this trans-
parency sheet hereon as “plastic”. The array of pillars is then inserted
into 2 mm deep grooves laser cut into a block of wood. Openings on
the side allowed us to see the deflection of the entire pillar, which we
through our theoretical model, used to predict force. Spacing between
pillars of plastic film is chosen to reduce interaction between pillars
Fig. 1. Snake scale interacting with an array of pillars: (a) side view, (b) front view, and (c) sch
circles at junctions). The solid black circles are a representation of additional links that are no
scale base angle, k is scale base torsional stiffness, and a is height of contact. (d) Free body diagra
i, ai is the acceleration of the center ofmass of segment i, Pi is the force that segment i exerts on se
tangential force exerted on scale segment i by a node of the pillar, Npi is the normal force exerte
node i+1by a node of the pillar, ti is the unit tangent parallel to scale segment i anddirected tow
scale segment i about an axis perpendicular to the plane of the figure and through the center
clockwise,Δsi is the length of scale segment i, ri is the radial distance along scale segment i to th
i – 1 and i.
but facilitate tripping of scales as the snake is pulled across the
apparatus.

We use two corn snakes in this study and conduct 10 trials with each
snake being conscious and unconscious. In the experiments, a snake is
pulled manually over the film array with its ventral scales catching
and displacing the pillars (Fig. 1a, b). We hold the snake with two
hands, supporting its body weight such that its ventral surface grazes
the tops of the pillars, as would be the case if the snake were climbing
vertically. Sliding backwards in this case corresponds to sliding down-
wards while climbing which happens when the maximum load scales
can support is exceeded. In this study, we are interested in investigating
this load limit for an individual scale. We test ventral scales located
within ±10% from the midpoint of the snake. All experiments are
filmed from the side using a high definition digital video camera
(Sony HDRXR200) at 30 frames/s. Image analysis via the open source
Tracker is used to record parameters such as scale base and tip positions,
scale base angle, and pillar tip position. Since we can precisely track
these parameters, we can simulate any of the experimental trials
regardless of their variability. However, using the side views we make
sure we omit the trials in which the snake belly pushes on the pillars
(rather than only tip of ventral scales touching the pillars).

2.3. Measurement of snake scale

Our theoretical model requires the shape of the snake scale, its
material properties and frictional properties. We discuss measurement
of each in turn. All measurements are performed on ventral scales of
unconscious snakes. The scale width and length are measured with
ematic. Each segment is coupled to adjacent segments via torsional springs (depicted by
t shown in this schematic. L1 and L2 are scale and pillar lengths, respectively. θ0 is initial
m of a segment. Blue arrows show forces andmoments applied.mi is themass of segment
gment i – 1,Ni is the normal force exerted on scale segment i by a node of the pillar, Ti is the
d on scale node i+1 by a segment of the pillar, Tpi is the tangential force exerted on scale
ard scale segment i+1,ni is the normal to scale segment i, Ii is themassmoment of inertia

of mass, θi is the angle that scale segment i makes with the horizontal, measured positive
e line of action of Ni, and ki is the torsional spring constant acting between scale segments



Table 1
Input parameters: length L, width b, thickness at base ho, thickness at tip he, and stiffness E
for scale and transparency.

Parameter Scale Transparency

L 9.4 mm 4 mm
b 25 mm 24.2 mm
h0 0.7 mm 0.12 mm
he 0.07 mm 0.12 mm
E 400 MPa 2280 MPa
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calipers (Fig. 2a). The thickness and radius of curvature of the scale tip
are obtained from scanning electron microscopy (SEM) (Fig. 2b). We
use Matlab to best fit a circle to the cross-section of the scale tip in the
SEM image to determine its radius of curvature.

We measure the elastic modulus of the pillar using DDL Instron
tensile test machine according to the Tensile Testing of Thin Plastic
Sheeting standard, ASTM D 882. However, we are unable to measure
the elasticity of the snake scale. Benz et al. use microindentation to
measure Young's modulus for ventral scales of a California King Snake.
They report a stiffness of 413 MPa for ventral scales of this snake [5].
Using this value as an estimate, we select a value of 400 MPa for the
elastic modulus of the corn snake ventral scale.

Friction between snake scale and pillars is measured using an
inclined plane experiment. We place the snake on a 2 m × 1 m plate
covered with transparency. Tilting the plane increases the static friction
force felt by the object. The inclination atwhich the snake begins to slide
down the slope reflects the static friction coefficient of that object on the
substrate. The details of this experiment are discussed byMarvi et al. [8].
We use this technique to measure the friction coefficient between both
snake and plastic (3 M transparency sheet). We also measure the
friction coefficient between glass and plastic.

3. Model

3.1. The snake scale

The snake scale is modeled as a series of segments, as depicted sche-
matically in Fig. 1c. The segments are pinned to each other lengthwise.
In addition, each segment is coupled to each of its two neighbors by a
torsional spring. Each torsional spring exerts an opposing moment in
proportion to the relative angle of the connected segments. Additional-
ly, linear viscous damping is imposed on the torsional motion of the
segments whereby an opposing moment is exerted about the center
of mass in proportion to the angular velocity of the segment. Typically,
we assume damping coefficients for the scale and pillar that correspond
to damping ratios of 0.01 and 0.1, respectively. The damping ratios were
selected in a heuristic fashion.We chose the smallest values of damping
ratios for which high frequency vibrations tended to die out quickly
during the simulation. No effort was made to measure the damping
characteristics of the snake scale or the pillar. As tabulated in Table 1,
the snake scale is tapered, and we represent this shape using segments
with differing thickness. The pillar is modeled similarly except using
segments of equal thickness.

3.2. Model assumptions

In this section, we discuss modeling of contact forces. Contact forces
include both normal and frictional forces. Any contact forces are
Fig. 2. (a) schematic and (b) SEMof a ventral scale. The red lines in the schematic represent thep
simulations (base to tip) is 9.4mm. The dashed line separates thewalled section from the tip sec
scale in half (longitudinally) to see the cross section of this scale.
assumed to occur between the segments of one body and the joints of
the opposing body according to the following rules:

1. If a particular joint or node of one body (joint i) is located along a
perpendicular that emanates from a segment j of the opposing body,
a mutual repulsive normal force Ni is then generated according to

Ni ¼ Kn dref−dð Þ ð1Þ

where Kn is the composite normal stiffness of the scale–pillar con-
tact, d is the perpendicular distance between the node and the opposing
segment, dref is the reference distance at which contact is assumed to
first occur, given the finite widths of both the snake scale and the pillar
film. We use Kn = 0.93 MPa and dref = 9 μm in our simulations.

2. The line of action of the repulsive force is along the perpendicular
(emanating from the segment j) that contains the joint i.

3. We model both static and sliding friction. A mutual tangential force
of magnitude |Ti | is generated at the interface between joint i and
segment j and acts in a direction to oppose sliding along the
segment. If the contact is in a sticking mode, the shear force will be
given by

Ti ¼ Ks ds−dsoð Þ ð2Þ

where ds is the combined shear displacement within the interface
(i.e., parallel to the local segment that is being contacted) and dso is
the reference contact point where the interface enters the stick mode
from the sliding model. While the interface is slipping, the shear force
will be given by

Ti ¼ μNi: ð3Þ

For all of the simulations, μ is set to 0.13, based on measurements of
static friction between the snake scale and the pillar. We assumed that
static and kinetic friction coefficients are the same.
arts of the scale that are attached to the snake body. The total lengthof the scale used in our
tion. Theprimary surface shown in the SEM image is thedorsal side of the scale.We cut this
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3.3. Equations of motion

A segment of a snake scale is shown in Fig. 1c. We define an interior
segment as one having two neighbors. The equations of motion include
the force balance on each segment aswell as themoment balance. Thus,
these equations may be written:

miai ¼ −Pi þ Piþ1 þ Ni þ Npi
� �

n̂i þ Ti þ Tpi
� �

t̂i; ð4Þ

Ii €θi ¼
Δs
2

Pn
i þ Pn

iþ1

� �þ riNi þ
Δs
2

Npi−ki θi−θi−1ð Þ þ kiþ1 θiþ1−θið Þ: ð5Þ

Similar equations of motion apply for boundary segments, with only
one neighbor. We define the following variables (Fig. 1d):

• mi is the mass of segment i,
• ai is the acceleration of the center of mass of segment i,
• Pi is the force that segment i exerts on segment i – 1,
• Ni is the normal force exerted on scale segment i by a node of the
pillar,

• Ti is the tangential force exerted on scale segment i by a node of
the pillar,

• Npi is the normal force exerted on scale node i+1 by a segment of the
pillar,

• Tpi is the tangential force exerted on scale node i+ 1 by a node of the
pillar,

• t̂i is the unit tangent parallel to scale segment i and directed toward
scale segment i + 1,

• n̂i is the normal to scale segment i : n̂i ¼ ti � ði� jÞ,
• Ii is the mass moment of inertia scale segment i about an axis perpen-
dicular to the plane of the figure and through the center of mass,

• θi is the angle that scale segment i makes with the horizontal, mea-
sured positive clockwise,

• Δsi is the length of scale segment i,
• Pi

n is the normal component of Pi,
• ri is the radial distance along scale segment i to the line of action of Ni,
• ki is the torsional spring constant acting between scale segments i – 1
and i.

Slightly modified versions of the above equations apply to the two
end segments of the snake scale. Analogous equations apply to the
pillar.

3.4. Determination of model inputs

Below we describe how segment mass, mass moment of inertia,
local bending moment, and local torsional stiffness are calculated. In
consideration of Fig. 2a, we divide the scale into two major sections:
(1) a walled section and (2) a tip section. The walled section extends
for 7 mm from the base, while the tip section has a length of 2.4 mm.
For the simulation the walled section consists of 4 equal-length seg-
ments. Similarly, the tip section consists of 4 equal-length segments. It
is important to have a finer resolution (i.e. smaller individual segment
lengths) in the tip section to capture the deformation characteristics of
the tip. Within each individual segment of the walled section, the
cross section is taken asU-shapedwith a uniformwall height h, uniform
wall thickness t, uniformbase thickness t, and uniformbasewidth b – 2t.
The height of a particular segment in the walled section is determined
from approximating the shape of the wall as a section of an ellipse
along its long direction. Specifically, the height hi of the segment i (for

i varying from 1 to 4) is given by hi ¼ h1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−½ði−1Þ=4�2

q
where h1 is

the 3.6 mm, as indicated in Fig. 2a. The cross-sectional area and mass
of segment i are then given, respectively, by Ai=2hiti+ ti(b−2ti) and
mi=ρAiΔsi where ρ is the mass density of the scale (4900 kg/m3) and
ti is assumed to vary linearly from its high value of 0.7 mm to its low
value at the tip of the scale (0.07 mm). In the tip section of the scale
(where i varies from 5 to 8), cross-sectional area is given by Ai=hibi
where bi is a linearly varying width given by bi=[1−(i−5)/4]b.
Based on these segment dimensions in both walled and tip section,
the areamoment of inertias andmassmoment of inertias are computed
for each segment of the scale. Corresponding relations are developed for
the pillar by dividing it into 8 segments that are uniform in all
dimensions.

To obtain the local torsional stiffness, we use the relationship
between bending moment and curvature for a flexible beam:

M sð Þ ¼ EIA sð Þ dθ
ds

ð6Þ

whereM(s) is the local bendingmoment, s is ameasure of arc length,
E is themodulus of elasticity, IA is the local areamoment of inertia of the
cross section, and θ is the angle that the beam centerlinemakeswith the
horizontal. The moment experienced by segment i in accordance with a
small difference in inclination between it and the preceding segment, is
given by

Mi ¼
EIAi

Δsi
θi−θi−1ð Þ: ð7Þ

Thus, the location torsional stiffness becomes ki=EIAi
/(Δsi).

3.5. Integration of equations of motion

We simulate the interaction between a snake scale and pillar with
respect to time. The snake scale is initially oriented at a prescribed
angle with respect to the horizontal and its base point is translated
along a prescribed path at a constant horizontal speed. The path of the
base point is determined from the video images from the experiment.
Additionally, the initial configuration of the pillar is based on the first
video frame that shows scale-pillar engagement.

At any instant, specification of the snake scale base position along
with all angular positions and angular velocities of both bodies results
in three unknown quantities for each segment of either body. All
other quantities are determined directly from body positions and body
velocities. At the same time, as per the equations presented above,
there are three independent equations for each segment. Hence, at
each time step, all of the unknowns can be determined by solving
the associated system of equations. In the present work, we use the
well-known 4th-order Runge–Kutta integration scheme [12].

3.6. Validation of model

The first step in our study is verification of our numerical model for
studying the dynamic interaction of two elastic beams. For this purpose
we compare the results of the dynamic numerical simulation to two
different analytical models. The test problem is one for which an
originally vertical, cantilevered pillar is loaded horizontally via pre-
scribed force at its end. In the numerical simulation, the pillar is allowed
to attain equilibrium asymptotically over time. The resulting configura-
tion is compared to the analytical solution from Euler–Bernoulli beam
theory and to the analytical static equilibrium solution associated with
the representation of the pillar as series of finite segments coupled by
torsional springs (as in the dynamic simulation). As shown in Fig. 3a,
there is excellent agreement among the three models. In doing the
comparison, it should be noted that a special technique was applied to
the discrete, segment-based models to mimic the zero-slope cantilever
boundary condition. That is, the stiffness of the base torsional
spring was set in relation to the value of the stiffness at all other joints
(k=Ebh3/12Δs, from above) so that the slope at the base node, as
estimated via a 2nd-order finite difference method applied to the first
three nodal points, would be zero.



Fig. 3. (a) Lateral deflection versus vertical position of the beam under 1 N load obtained
fromdynamic simulation, Euler–Bernoulli theory, and analytical torsion springmodel. The
inset illustrates the loading configuration. (b) Interaction of glass and a pillar at two differ-
ent contact heights, a. The plot illustrates horizontal force as a function of horizontal dis-
placement of pillar where it makes a contact with glass. The inset shows the schematic
of this experiment.
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In order to calibrate the pillars we attach a stiff glass arm to the end
of a weight micro scale and put the pillar array on a micrometer
platform. Placing the tip of the glass arm close to the tip of the film
and adjusting the platform dial, a force-displacement curve is made
for the pillar (Fig. 3b). As shown in this figure, increasing the contact
height, a, decreases the slope of force-displacement curve. The horizon-
tal force is seen to increase more-or-less steadily with increasing glass
displacement, but with a decreasing rate as the tip of the glass arm
slides toward the tip of the pillar. Ultimately, at certain displacement,
the glass arm slides past the tip so that contact is lost. As illustrated in
Fig. 3b, there is a reasonably good match between the experimental
data and the results of the numerical simulation, particularly for the
larger value of contact height, a.
Table 2
Estimations of scale base spring stiffness based on load-cellmeasurements. Kinetic coefficient of
magnitude of friction is |W|=μF. For sliding up, friction force on scale contributes to the opening
ingmoment caused by the horizontal force. θb is the belly angle, θo is base opening angle, θ is ba
d2 are the moment arms for |W| and F, respectively.

Scale θb (deg) θo (deg) θ (deg) F (N) d2 (mm

1 2.5 45.5 43 1.13 6.41
2 12.5 62.8 50.3 1.02 7.23
3 19.3 63.3 44 1.34 6.53
4 2.1 53.9 51.8 1.19 7.39
3.7. Measurement of scale torsional stiffness

We assessed the torsional stiffness of a belly scale by interacting a
single scale with a glass arm attached to a load-cell. A glass arm extends
vertically from the load-cell and engages a belly scale while the (con-
scious) snake is supported and translated laterally. The load-cell records
the horizontal force exerted upon the glass arm by the load-cell. Results
of this type of measurement for four different belly scales are shown in
Table 2. Based on the analysis of the video stills, we developedmeasure-
ments of the overall orientation of the snake belly (“belly angle”), θb, the
scale opening angle with respect to the belly θo, and the scale opening
angle with respect to the horizontal, θ. Note that a positive value for
the belly angle means that the head-side is lower than the tail-side.
Note also that θ = θo – θb.

We also present in the table the magnitude of vertical force, |W |,
acting on the load-cell arm and the horizontal force, F, as well as their
moment arms d1 and d2, respectively, relative to the base of the scale.
Now the value of the horizontal force comes directly from the load-
cell, whereas the magnitude of vertical force is assumed to be 0.29F,
where 0.29 is the measured kinetic friction coefficient between the
snake scale and the glass load-cell arm. Based on these data, we
compute the torsional spring constant at the base of the scale (viewing
the scale here as a passive torsional spring). That is, the computed
spring constant is given by

k ¼ Fd2−Wd1
θ

ð8Þ

In the second to last column, k is computed under the assumption
that the scale is sliding up the load-cell arm, whereas, the last column
shows the result of assuming that the scale is sliding down the load-
cell arm. Under the assumption of upward slip, the average value of tor-
sional spring constant is 10.5 N·mm/rad, whereas under the assump-
tion of downward slip, the computed spring constant is 6.0 N·mm/rad.

While it is known, from the video record, that the overall motion of
scale contact point is upward along the load-cell arm, there is the possi-
bility that, at the instant of the forcemeasurement, the scale is in a stick
mode rather than in a sliding mode. In this case, the vertical force W
could be anywhere in between −0.29F (for upward slip) and 0.29F
(for downward slip). Thus, without knowing that state of sticking or
slipping, we can conclude only that spring constant is within the value
for sliding up or sliding down. Therefore, if there is a single value of
spring constant that is consistent with all of the four video frames, it
must be simultaneously within each of the four ranges delineated by
the values for sliding up and sliding down in Table 2. Therefore, k
must be between 7.21 and 8.36 N·mm/rad.

3.8. Simulation of scale torsional stiffness measurement

To provide validation of the process to determine the torsional stiff-
ness, as outlined above, we conduct a simulation of the engagement of a
snake scale with a load-cell arm. The load-cell arm ismodeled as a rigid,
friction, μ, between snake and glass is 0.29. Horizontal contact force (normal force) is F and
moment caused by the horizontal force. For sliding down, friction force opposes the open-

se anglewith respect to the horizontal, k is the scale base torsional spring value, and d1 and

Sliding up Sliding down

) |W| (N) d1 (mm) k (N·mm/rad) k (N·mm/rad)

0.33 6.87 11.96 6.29
0.30 6.00 8.36 5.12
0.39 6.76 10.31 5.55
0.35 5.81 11.48 7.21



Table 3
Experimental data versus simulation results for horizontal contact force, F, and base open-
ing angle, θ0. There is a good agreement for both F and θ0 in each casewith a scale base tor-
sional spring value, k that ranges between 6.6 and 8.8 N·mm/rad.

Scale
θb
(deg)

k
(N.mm/rad),
simulation

θo (deg) F (N)

Experiment Simulation Experiment Simulation

1 2.5 9.5 45.5 45.2 1.13 1.14
2 12.5 7 62.8 63.5 1.02 1.04
3 19.3 8 63.3 63.8 1.34 1.35
4 2.1 9 53.9 53.4 1.19 1.15
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verticalmember coupled to its base via a torsional spring. The load-cell's
torsional spring constant is determined from the video record by
comparing the moment caused by the horizontal force to the angular
deflection of the load-cell arm (with an uncertainty of approximately
±100 N·mm/rad). This procedure results in a computed value of
1250 N·mm/rad for the torsional spring constant of the load-cell.
Fig. 4.Video sequence of a snake scale interactingwith a pillar. (a) Experiment versusmodel (b)
of applied opening moment at its base.
Additionally, based on the video record, the tip of the scale is observed
to engage the load-cell arm at approximately 30 mm above the base
of the load-cell (with an uncertainty of about ±0.5 mm). Thus, there
are three measured parameter values that are targeted for matching
via the simulation: (1) a contact point height between 29.5 and
30.5mm, (2) themeasured opening angle of the scale, and (3) themea-
sured horizontal force. In trying to match these experimental values,
three input parameters are varied: (1) the vertical position of the scale
base (relative to the base of the load-cell), (2) the horizontal position
of the scale base (relative to the location of the load-cell), and (3) the
scale torsional spring constant. Results of this simulation are shown in
Table 3. As observed, good matching with the experimental findings
is obtained for values of torsional spring constant that range between
7N·mm/rad and 9.5N·mm/rad. This range of torsional spring constants
is close to the range found in Section 3.7. It is concluded, therefore,
that the torsional spring constant for the base scale is in the vicinity of
8 N·mm/rad. Note that the above analysis treats the scale as a passive
torsional spring. That is, we are supposing that, for this test, the snake
with and (c)without applied basemoment. The scale in panel (c) slides up due to the lack
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is not actively controlling its scales. The fact that we obtain a fairly small
range for the scale torsional spring constant across the four different
scales which are measured with opening angles that ranged from 45°.
to 63.3° provides some support for this notion.

4. Results

We perform experiments of the snakes sliding against our pillar ar-
rays. In each trial, we drag the snake over the pillars resulting in several
engagements of the snake scales with the pillars. Fig. 4a shows one of
the interactions of a snake scale with a pillar. This process which occurs
in 0.13 s, and involves a total body displacement of 3.4 mm. The first
frame illustrates the initial contact between the scale and pillar. Then
the scale slides down the pillar as the pillar begins to deflect. In the
Fig. 5. (a) Schematic of scale-pillar interaction. Comparison of simulation (continuous curve) a
flection as a function of snake horizontal displacement for (b) trial 1, with applied base mom
(e) trial 2, without applied base moment (trials 1 and 2 are two of the experimental scale-pi
the base spring stiffness is set to 4 N·mm/rad and the equilibrium base angle is set to 14 degre
second frame the contact point between scale tip and obstruction is fur-
ther down on the pillar. Note the large opening angle of the snake scale.
In the last frame, the scale opening angle has grown even larger, but the
contact point is now further up the pillar. Note that last frame repre-
sents the last image that we can observe the scale in contact with the
pillar. Fig. 4b, c show snapshots of the computer simulation correspond-
ing to each of the displayed video frames with and without applying an
opening moment at the base of the scale. When no opening moment is
applied the scale is passively deformed; a scale withmoment refers to a
scale that includes an active contribution to the response during
engagement with the pillar. As seen in Fig. 4b, the simulation with an
applied basemoment does a good job of capturing the essential features
of the interaction, whereas, in the absence of an applied moment
(Fig. 4c), the scale quickly slides up the pillar (note the small base
nd experiment (symbols) for base angle, scale and pillar overlap, and transparency tip de-
ent, (c) trial 1, without applied base moment, (d) trial 2, with applied base moment, and
llar interactions that are analyzed in detail). For simulations with applied base moment,
es.



Fig. 6. Contact forces between scale tip and flexible pillar for a case that the scale is sliding
or tending to slide down the pillar (scale and pillar are isolated here to better illustrate
forces). Resultant contact force, FR, on scale tip causes a closing moment on the scale for
the given contact configuration. T and N are tangential and normal components of the
contact force. F and W are horizontal and vertical components of the contact force. θ is
the scale base angle and ϕ is the pillar tip deflection angle.
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displacement that has occurred in Fig. 4c by the time the scale has reach
the top of the pillar).

Additional evidence for the role of active mechanisms comes from
comparing scale-pillar engagement results between a conscious and
unconscious snake. First, it is noted that when the snake, whether
conscious or unconscious, is dragged backward across the pillar array,
most of the scales do not engage, but rather, simply skim over the top
Fig. 7. Simulation results formaximumhorizontal displacement as a function of free angle
of scale base and base torsional stiffness for parameters according to (a) experimental trial
1 and (b) experimental trial 2.
of the pillars. That is the scales tend to remain fully closed, each keeping
flush contact with its adjacent anterior scale. However, in certain cases,
a scalewill not beflush as it approaches a pillar, having its tip lower than
the top of pillar. In analyzing the video record, we observe several such
engagements. Of particular interest are the set of cases where the angle
of approach is shallow, because, based on our simulation, a purely
passive response leads to only sliding up the pillar as opposed to sliding
down first and then eventually up. Results for the unconscious snake
shows that there are 7 engagements where the opening angle is less
than 7°, none of which slides down. By comparison, for the conscious
snake, there were 8 such engagements with opening angles less than
7°, 3 of which slide down.

We estimate the horizontal contact force between scale and pillar by
considering various directions of sliding that could be occurring in our
sparse video frames. Assuming that the beginning and middle frames
correspond to the scale sliding down the pillar, while the end frame
corresponds to the scale sliding up, we compute horizontal force values
of 0.16 N, 0.35 N and 0.5 N, respectively for the first, middle and last
frame in Fig. 4a, respectively. Since this horizontal force resists the back-
ward horizontal translation of the snake, it represents, in the context of
the snake slipping or tending to slip backwards, the friction force
between the snake and the counter surface. This range of force is around
6% of the snake's body weight. Thus, a snake needs to only have 16
scales in contact with the pillars to prevent sliding. This scenario is
quite feasible, considering that the corn snake in our study has more
than 100 scales.

This method of preventing sliding thus is quite different from
the sliding forces in Amonton's classical friction laws. Specifically, the
snake's resistance to sliding parallel to a surface, does not rely on
the presence of any appreciable normal force. Thus, this method of
preventing sliding can be used for climbing vertical surfaces such as
tree trunks.

In addition to our video sequences, we also provide quantitative
comparisons between our model and experiment. We consider three
variables that characterize the motion of the scale (Fig. 5a). Fig. 5
shows the scale opening angle, scale-pillar overlap, and pillar tip deflec-
tion for experimental trials 1 (Fig. 5b, c) and 2 (Fig. 5d, e). These trials
are two scale-pillar interactions (out of many interactions observed in
our experiments) thatwe analyze in detail. As observed, there is reason-
able agreement in Fig. 5b, d. However, it is important to note that this
degree of agreement was obtained by introducing two modifications
to the basic model of the snake scale. First, it is found, based on analyz-
ing the initial contact configuration (i.e., per the beginning video frame
above), the contact forces initially exert a closing moment on the scale.
Fig. 6 shows, schematically the geometry of a typical contact at initial
engagement. For the scale to be on the verge of sliding down the pillar,
the friction force Twould be tangent to the pillar and pointing upward.
The combination of the normal force N and the friction force cause the
line of action topass to the right of the base of the scale, thereby exerting
a moment that tends to close the scale. Hence, if the scale base angle is
modeled as a passive torsional spring, the scale will tend to close at the
beginning of engagement and slides up the pillar (Fig. 5c, e). Thus, to
achieve a level of agreement with experiment, we assume that
the snake actively exerts a constant opening moment on the scale
throughout the engagement. This condition is equivalent to assuming
a particular value for the equilibrium base angle, namely 14 degrees.
Additionally, we set the torsional spring constant to be 4 N·mm/rad,
which is less than that found above through load-cell measurement
(approximately 7–9 N·mm/rad). In order to further clarify the choice
of these two parameters we conduct a simulation to find maximum
horizontal displacement as a function of scale base torsional stiffness
and free angle of scale base. As shown in Fig. 7, torsional spring constant
of 4 N·mm/rad and the equilibrium base angle of 14 degrees result in
the highest horizontal displacement before disengagement of scale
and pillar. Small free angles result in sliding up and thus disengagement
before any horizontal displacement of snake scale occurs. Base torsional



60 H. Marvi et al. / Biotribology 5 (2016) 52–60
stiffnesses larger than 4 N·mm/rad also result in small maximum
horizontal displacements.

The role of active opening moment is further illustrated via Fig. 4c
which shows the simulation results when we assume that the snake
scale is a purely passive torsional spring with a spring constant of 5.12
N·mm/rad (the lowest value found in Table 2). As observed, the scale
slides up the pillar right away and begins to lose contact when the
base of the scale has displaced less than 0.1 mm. In fact, the scale is
found always to slide up and off of the pillar, from the initial configura-
tion, no matter what value of scale base torsional spring constant
is used, unless one introduces an opening moment as done above
(Figs. 4b and 5b, d).

Comparing the experimental measurements and simulation results
presented in this study, it is inferred that snakes can tune the torsional
stiffness of their ventral scales to adapt to the environment and attach
more effectively to their substrates. We hypothesize that snakes can
use their ventral cutaneousmusculature to actively control their ventral
scale torsional stiffness [13]. This observation can explain the difference
reported in frictional properties of conscious versus unconscious snakes
[8]. However, systematic experiments (using an apparatus that mini-
mizes human handling of the snakes in these measurements) in addi-
tion to using larger sample of animals are needed to strongly support
this hypothesis.

5. Conclusions

In this study,we investigate the resistive force of a single snake scale.
We develop a model for the snake scale engagement with a flexible
pillar and compare its results to video recordings of snakes' bellies
being pulled manually over an array of pillars. A force and deformation
analysis performed in conjunction with the videography suggests that
snakes can actively control their ventral scales to achieve prolonged
contact and greater resistance with the pillar. The idea of controlling
frictional properties as a function of position and time could result in
developing new functional surfaces for making effective interactions
with complex environment and reducing energetic cost of locomotion.
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